1st International Workshop on High-Order CFD Methods

Test Case C1.3: Steady Flow over the NACA0012 Airfoil

Georg May, Michael Woopen

Graduate School AICES, RWTH Aachen

January 26, 2012

Test Case 1.3: Summary

- Trends in numerical discretization and relaxation procedures
- Summary of results
- This report: Not too heavy on statistics (small sample size)
 - 1.3a (subsonic, inviscid): 6 data sets
 - 1.3b (transonic, inviscid): 3 data sets
 - 1.3c (subsonic, viscous): 5 data sets
- Note: Not all contributions represented (missing data)

Discretization Methods

Method of choice seems to be DG

- This includes many DG-flavors (e.g. CPR-DG)
- Non-DG submissions:
 - Finite-Volume (1)
 - SBP-SAT (1)
- Most use fairly standard DG schemes
 - Winner of popularity contest: DG with BR2 (used by a third of submissions)

Meshes and Fidelity of Results

Meshes

- Very many different meshes found use
 - provided quad meshes
 - self-generated meshes (quad, tri, and mixed)
- Correlation between mesh type and fidelity of results not attempted here
- Submissions include adaptive methods (goal-oriented)

General Remark on Results

- For subsonic cases: Convergence studies reveal superiority of high-order approximation
 - Fewer DOFS for same error
 - Lower CPU time for same error
- Work needs to be done for transonic flow

Solution Methods

This is a steady test case! Look for efficient relaxation methods

- Method of choice seems to be (damped) Newton / Krylov
 - Almost all use GMRES (one BICGSTAB)
- No consensus on preconditioners
 - ILU-n
 - Gauss-Seidel
 - Multigrid

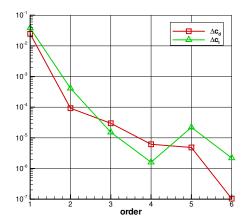
Important note: We do not compare and evaluate efficiency

- insufficient number of samples
- We cannot assume all codes are fully optimized

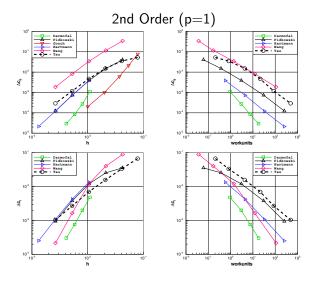
Convergence Summary
Test Case C1.3a (Subsonic inviscid)

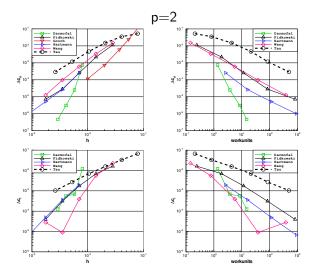
Convergence Towards Truth Solution

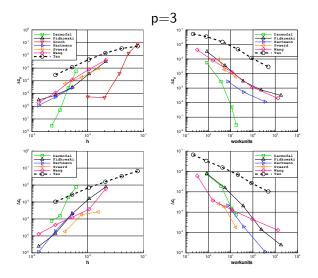
Do we agree on the truth solution?

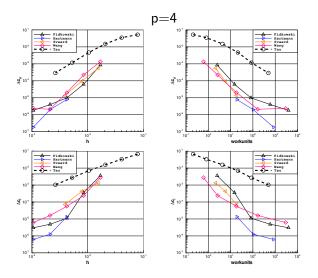

"Truth" lift and drag coefficients

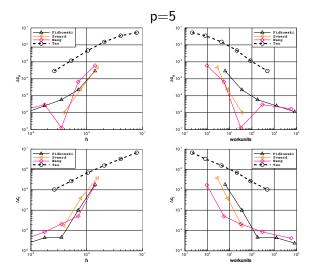
	Average	Standard Deviation
Drag	2.4219E-06	2.0548E-06
Lift	2.865E-01	2.3008E-05

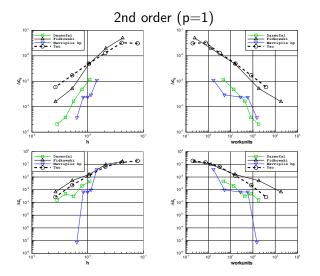

Compare to p=3 solutions

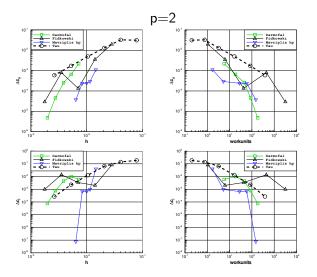

	Average	Standard Deviation
Drag	1.5166E-05	2.4829E-05
Lift	2.865E-01	3.7218E-05

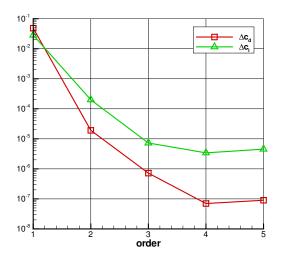

Convergence towards Truth Solution



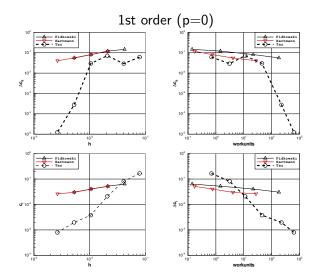

Mean lift and drag coefficients for each order on the finest mesh approaching the mean reference values

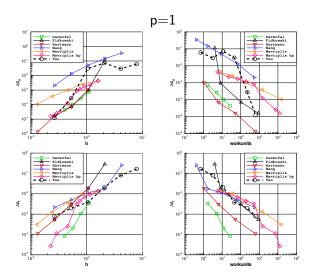


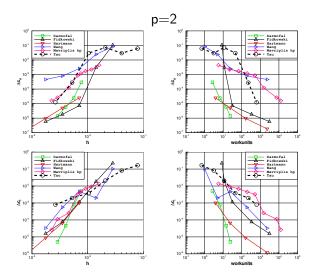


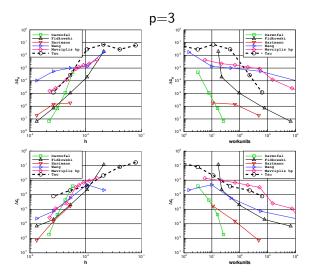


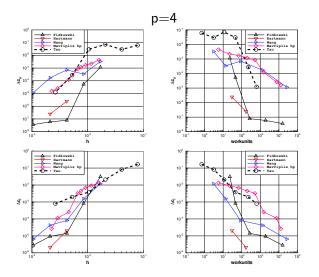
Convergence Summary
Test Case C1.3b (Transonic Inviscid)

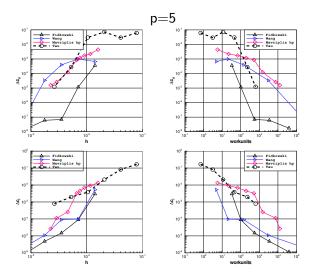





Convergence Towards Truth Solution




Mean lift and drag coefficients for each order on the finest mesh approaching the mean reference values



Summary of Conclusions

- Participants use:
 - Predominantly DG Discretization methods
 - Similar Solution methods for the steady problem
- Higher order pays in terms of work units versus error
 - i.e. for the subsonic cases!
- Convergence in lift and drag shows considerable scatter
- Adaptive mesh refinement demonstrates advantages
- Very difficult to establish clear trends