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Kinetic equations containing terms for spatial transport, gravity, fluid drag and particle-
particle collisions can be used to model dilute gas-particle flows. However, the enormity of 
independent variables makes direct numerical simulation of these equations almost 
impossible for practical problems. A viable alternative is to reformulate the problem in 
terms of moments of velocity distribution. Recently, a quadrature-based moment method 
was derived by Fox for approximating solutions to kinetic equation for arbitrary Knudsen 
number. Fox also described 1st- and 2nd-order finite-volume schemes for solving the 
equations. The success of the new method is based on a moment-inversion algorithm that is 
used to calculate non-negative weights and abscissas from moments.  The moment-inversion 
algorithm does not work if the moments are non-realizable, meaning they do not correspond 
to a distribution function. Not all the finite-volume schemes lead to realizable moments. 
Desjardins et al. showed that realizability is guaranteed with the 1st-order finite-volume 
scheme, but at the expense of excess numerical diffusion. In the present work, the non-
realizability of the standard 2nd-order finite-volume scheme is demonstrated and a 
generalized idea for the development of high-order realizable finite-volume schemes for 
quadrature-based moment methods is presented. This marks a significant improvement in 
the accuracy of solutions using the quadrature-based moment method as the use of 1st-order 
scheme to guarantee realizability is no longer a limitation. 

I. Introduction 
 

AS-PARTICLE flows are ubiquitous in aerospace, mechanical, chemical and many other engineering 

disciplines. One finds such flows in automotive and aircraft engines, snow and sand storms, helicopter 

brownout phenomenon, and many other critical situations. The understanding of the flow characteristics is crucial in 

improving the performance of gas-turbine engines, or mitigating the harmful effects of helicopter brownout. 

 The numerical simulation of gas-particle flows is complicated by the wide range of phenomena that can occur in 

real applications [1, 2, 3, 4, 5, 6, 7, 8, 9]. In the case of helicopter brownout, the number of particles is so large that it 

is impossible to track the motion of each one. In addition, these particles may have very different sizes and shapes. It 

is well known that the traditional multiphase flow solvers based on the volume-of-fluid (VOF) method [15, 16, 17] 

or the level-set method [18, 19, 20 , 21] are hopeless for such applications, and Lagrangian particle tracking methods 

[22, 23, 24] are also very inefficient. In many other applications, physical complexities may include particle 

breaking, merging (or coalescence), and evaporation [25]. It appears, the only method that can handle these physical 

complexities is a kinetic-based method that solves for the moments of the velocity distribution function. 

 Fox [5, 10, 11, 12, 13] developed a quadrature-based moment method (QMOM) to solve for a set of moments of 

the velocity distribution function. The success of this method is based on a moment-inversion algorithm that is used 

to calculate non-negative weights and abscissas from moments. The moment-inversion algorithm does not work if 
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the moments are non-realizable. Not all the finite-volume schemes lead to realizable moments. Desjardins et al. [1] 

showed that realizability is guaranteed with 1
st
-order finite-volume scheme that has high inherent numerical 

diffusion. In the present work, the non-realizability of the standard 2
nd

-order finite-volume scheme is demonstrated 

and a generalized idea for the development of high-order realizable finite-volume schemes for quadrature-based 

moment methods is presented. 

 The paper is organized as follows. In Section 2, QMOM is reviewed and realizability of 1
st
-order finite-volume 

scheme is revisited. The non-realizability of standard 2
nd

-order finite-volume scheme is also discussed in Section 2. 

Thereafter, in Section 3, new realizable high-order finite-volume schemes are presented. Section 4 presents some 

numerical results including accuracy studies. Conclusions for the present study are summarized in Section 5. 

II. Quadrature Method Of Moments (QMOM) 

2.1 Kinetic Theory of Dilute Particle Flows 
 Dilute gas-particle flows can be modeled by a kinetic equation [26, 27, 28] of the form 

𝜕𝑡𝑓 + 𝒗. 𝜕𝒙𝑓 + 𝜕𝒗 ∙  𝑓𝑭 = ℂ (2.1) 

where 𝑓(𝒗, 𝒙, 𝑡) is the velocity based number density function, 𝒗 is the particle velocity, 𝑭 is the force acting on 

individual particle, and ℂ is the collision term, representing the rate of change in the velocity distribution function 

due to collisions. The collision term can be described using Bhatnagar-Gross-Krook (BGK) collision operator [29]: 

ℂ =
1

𝜏
(𝑓𝑒𝑞 − 𝑓) 

(2.2) 

where 𝜏 is the characteristic collision time, and 𝑓𝑒𝑞  is the Maxwellian equilibrium velocity distribution, 

𝑓𝑒𝑞  𝒗 =
𝑀0

 (2𝜋ℴ𝑒𝑞 )3
exp  −

 𝒗 − 𝑼𝑝  
2

2ℴ𝑒𝑞

  
(2.3) 

in which 𝑼𝑝  is the mean particle velocity, ℴ𝑒𝑞  is the equilibrium variance and 𝑀0 is the particle number density. In 

gas-particle flows, the force term is given by the sum of the gravitational contribution and the drag term exerted 

from the fluid on the particles: 

𝑭 = 𝑭𝒈 + 𝑭𝒅 (2.4) 

For dilute gas-particle flows, the drag force on a particle can be approximated by 

𝑭𝒅 =
3𝑚𝑝𝜌𝑔

4𝜌𝑝𝑑𝑝

𝐶𝑑  𝑼𝒓 𝑼𝒓 
(2.5) 

where 𝑼𝒓 = 𝑼𝒈 − 𝑼𝒑 is the relative velocity between two phases, 𝑼𝒈 is the gas velocity, 𝑼𝒑 is the particle phase 

local mean velocity, 𝜌𝑔  and 𝜌𝑝  are gas and particle densities and 𝑑𝑝  the particle diameter. The drag coefficient 𝐶𝑑  is 

given by Schiller & Nauman correlation [30]. 

𝐶𝑑 =
24

𝑅𝑒𝑝
(1 + 0.15𝑅𝑒𝑝

0.687 ) (2.6) 

in which 𝑅𝑒𝑝 = 𝜌𝑔𝑑𝑝  𝑼𝒈 − 𝑼𝒑 /𝜇𝑔 , 𝜇𝑔  being the dynamic viscosity of gas phase. 

2.2 Moment transport equations 
In the quadrature-based moment methods (QMOM) of Fox [5, 13],  a set of moments of number density function 

𝑓 are transported and their evolution in space and time is tracked. Each element of the moment set is defined 

through integrals of the velocity distribution function as 

𝑀0 =  𝑓𝑑𝒗          𝑀𝑖
1 =  𝑣𝑖𝑓𝑑𝒗 

𝑀𝑖𝑗
2 =  𝑣𝑖𝑣𝑗𝑓𝑑𝒗          𝑀𝑖𝑗𝑘

3 =  𝑣𝑖𝑣𝑗𝑣𝑘𝑓𝑑𝒗 

(2.7) 

where the superscript of 𝑀 represents the order of corresponding moment. Moment transport equations are obtained 

by applying the definition of moments to (2.7), leading to the following set of partial differential equations in 

moments: 

𝜕𝑀0

𝜕𝑡
+

𝜕𝑀𝑖
1

𝜕𝑥𝑖

= 0 

𝜕𝑀𝑖
1

𝜕𝑡
+

𝜕𝑀𝑖𝑗
2

𝜕𝑥𝑗

= 𝑔𝑖𝑀
0 + 𝐷𝑖

1 

𝜕𝑀𝑖𝑗
2

𝜕𝑡
+

𝜕𝑀𝑖𝑗𝑘
3

𝜕𝑥𝑘

= 𝑔𝑖𝑀𝑗
1 + 𝑔𝑗𝑀𝑖

1 + 𝐶𝑖𝑗
2 + 𝐷𝑖𝑗

2  

 

 

 

(2.8) 
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𝜕𝑀𝑖𝑗𝑘
3

𝜕𝑡
+

𝜕𝑀𝑖𝑗𝑘𝑙
4

𝜕𝑥𝑙

= 𝑔𝑖𝑀𝑗𝑘
2 + 𝑔𝑗𝑀𝑖𝑘

2 + 𝑔𝑘𝑀𝑖𝑗
2 + 𝐶𝑖𝑗𝑘

3 + 𝐷𝑖𝑗𝑘
3  

where 𝐷𝑖
1, 𝐷𝑖𝑗

2  and 𝐷𝑖𝑗𝑘
3  are due to the drag force and the terms containing 𝑔𝑖 , 𝑔𝑗 and 𝑔𝑘  are due to gravity. 

2.3 Quadrature-based closures 
The set of transport equations for the moments reported in (2.8) is unclosed because each equation contains the 

spatial fluxes of the moments of order immediately higher, and the collision and drag source terms. In quadrature-

based moment methods quadrature formula are used to provide closures to the source terms in the moment transport 

equations, by introducing a set of 𝛽 weights 𝑛𝛼  and abscissas 𝑼𝛼 , which are determined from the moments of the 

distribution function using an inversion algorithm. The inversion algorithm is explained in detail in Fox [5]. 

The distribution function 𝑓 is written in terms of the quadrature weights and abscissas using Dirac delta 

representation. 

𝑓 𝒗 =  𝑛𝛼𝛿(𝒗 − 𝑼𝜶)
𝛽

𝛼=1
 

(2.9) 

The moments can be computed as a function of quadrature weights and abscissas by approximating the integrals in 

(2.7) with summations: 

𝑀0 =  𝑛𝛼
𝛽
𝛼=1           𝑀𝑖

1 =  𝑛𝛼𝑈𝛼𝑖
𝛽
𝛼=1  

𝑀𝑖𝑗
2 =  𝑛𝛼𝑈𝛼𝑖𝑈𝛼𝑗

𝛽
𝛼=1           𝑀𝑖𝑗𝑘

3 =  𝑛𝛼𝑈𝛼𝑖𝑈𝛼𝑗
𝛽
𝛼=1 𝑈𝛼𝑘  

(2.10) 

The source terms due to drag and gravity are computed as 

𝐷𝑖
1 =  𝑛𝛼

𝛽

𝛼=1
 
Ϝ𝑖𝛼

𝑚𝑝

− 𝛿𝑖2𝑔  

𝐷𝑖𝑗
2 =  𝑛𝛼   

Ϝ𝑖𝛼

𝑚𝑝

− 𝛿𝑖2𝑔 𝑈𝑗𝛼 +  
Ϝ𝑗𝛼

𝑚𝑝

− 𝛿𝑗2𝑔 𝑈𝑖𝛼  
𝛽

𝛼=1
 

𝐷𝑖𝑗𝑘
3 =  𝑛𝛼   

Ϝ𝑖𝛼

𝑚𝑝

− 𝛿𝑖2𝑔 𝑈𝑗𝛼 𝑈𝑘𝛼 +  
Ϝ𝑗𝛼

𝑚𝑝

− 𝛿𝑗2𝑔 𝑈𝑘𝛼𝑈𝑖𝛼 +  
Ϝ𝑘𝛼

𝑚𝑝

− 𝛿𝑘2𝑔 𝑈𝑖𝛼𝑈𝑗𝛼  
𝛽

𝛼=1
 

(2.11) 

The details of computation of drag force terms, Ϝ𝑖𝛼 , Ϝ𝑗𝛼  and Ϝ𝑘𝛼 , can be found in [5]. The spatial flux terms are 

closed according to their kinetic description [1, 31]. Each moment involved in the spatial derivative is decomposed 

in two contributions, as shown in (2.12) for the first-order moments. 

𝑀𝑖
1 =  𝑣𝑖

0

−∞

 𝑓𝑑𝑣𝑗𝑑𝑣𝑘 𝑑𝑣𝑖 +  𝑣𝑖

+∞

0

 𝑓𝑑𝑣𝑗𝑑𝑣𝑘 𝑑𝑣𝑖  
 

(2.12) 

Using (2.9), (2.12) can be written as: 

𝑀𝑖
1 =  𝑛𝛼

𝛽

𝛼=1
min 0, 𝑈𝑖𝛼  +  𝑛𝛼

𝛽

𝛼=1
maxs(0, 𝑈𝑖𝛼 ) 

(2.13) 

For collisions, the source terms in the moment transport equations are given by: 

𝐶𝑖𝑗
2 =

𝑀0

𝜏
(ℴ𝑒𝑞𝛿𝑖𝑗 − ℴ𝑖𝑗 ) 

𝐶𝑖𝑗𝑘
3 =

1

𝜏𝑐

(∆𝑖𝑗𝑘 − 𝑀𝑖𝑗𝑘
3 ) 

(2.14) 

where ℴ𝑒𝑞 , 𝜏𝑐  and ∆𝑖𝑗𝑘  are respectively the variance, collision time and the set of third-order moments of the 

equilibrium distribution function. 

2.4 Boundary conditions 
Although, it is equally valid to write the boundary conditions for the moment transport equations in terms of the 

moments, it is more convenient to write them in terms of weights and abscissas. In this work three types of boundary 

conditions are used – fix-all, periodic and wall-reflective. At fix-all boundary, the weights and abscissas are 

specified. Periodic boundary conditions copy the weights and abscissas from the outgoing periodic boundary cell to 

the corresponding incoming periodic boundary cell. The boundary conditions at the walls are set so that particle that 

collides with the wall is specularly reflected. This condition corresponds to changing the sign of the velocity 

component of the particle along the direction perpendicular to the wall. The implementation of this boundary 

condition in the quadrature-based algorithm is done by changing the sign of the abscissas in the appropriate direction 

[5]. If i=0 indicates the position of the wall, perpendicular to the second direction of reference frame, and i=1 

indicates the neighboring computational cell, the boundary condition can be written as 
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𝑛𝛼

𝑈𝛼

𝑉𝛼
𝑊𝛼

  𝑖=0=  

𝑛𝛼/𝑒𝑤

𝑈𝛼

−𝑒𝑤𝑉𝛼
𝑊𝛼

  𝑖=1 

(2.15) 

where 𝑒𝑤  is the paricle-wall restitution coefficient.  

2.5 Non-realizability problem 
 The moment-inversion algorithm computes the set of weights and abscissas from the corresponding set of 

moments by solving a set of nonlinear equations. To discuss the problem of realizability, a simplified one-

dimensional case with 2 quadrature nodes is considered here. For this case, the set of moment equations after 

dropping collision and drag terms can be written as 
𝜕𝑊

𝜕𝑡
+

𝜕𝐻(𝑊)

𝜕𝑥
= 0 

(2.16a) 

where, 

𝑊 = [𝑀0    𝑀1    𝑀2    𝑀3]    and    𝐻(𝑊) = [𝑀1    𝑀2    𝑀3    𝑀4] (2.16b) 

If the set of weights and abscissas for 2-node quadrature case are (𝑛1, 𝑈1) and  𝑛2, 𝑈2 , the first four moments can 

be written as: 

𝑀0 = 𝑛1(𝑈1)0 + 𝑛2(𝑈2)0 

𝑀1 = 𝑛1(𝑈1)1 + 𝑛2(𝑈2)1 

𝑀2 = 𝑛1(𝑈1)2 + 𝑛2(𝑈2)2 

𝑀3 = 𝑛1(𝑈1)3 + 𝑛2(𝑈2)3 

 

 

(2.17) 

In the equations for 𝑀0 and 𝑀1, powers of 𝑈1 and 𝑈2 are redundant. In moment inversion algorithm 𝑀0, 𝑀1, 𝑀2, 

𝑀3 are known and 𝑛1, 𝑛2, 𝑈1, 𝑈2 are computed, by solving the above set of equations in reverse direction. However, 

any arbitrary set of weights and abscissas do not conform to the definition of 𝑓 in (2.9). Only the set of weights and 

abscissas that are realizable are allowed. A set of weights and abscissas or the set of moments from which it is 

computed is called realizable, if the weights are non-negative and abscissas lie in the interior of the support of 𝑓. 

Because of the non-linearity of inversion problem, it is extremely difficult to determine in advance whether a given 

set of moments is realizable. However, Desjardins et al. [1] described that any finite-volume scheme that could 

guarantee positivity of the effective velocity distribution function (explained below) will always keep the moments 

in realizable space. 

 The conservative moments and moment fluxes in (2.16a) can be written in terms of velocity distribution 

function. 

𝑊 =  𝐾 𝑣 𝑓𝑤 (𝑣)𝑑𝑣 

𝐻(𝑊) =  𝑣𝐾 𝑣 𝑓𝑤 (𝑣)𝑑𝑣 

(2.18a) 

where 

𝐾 𝑣 = [1    𝑣    𝑣2     𝑣3] (2.18b) 

However, when a finite-volume scheme is used to advance the conservative moments in time, the form of the 

updated moments differs from the one given in (2.18a). Assuming that the moments at time level n are realizable, 

the moments at time level (n + 1)  for 𝑖𝑡𝑕  cell can be written as 

𝑊𝑖
𝑛+1 = 𝑊𝑖

𝑛 −
∆𝑡

∆𝑥
 𝐺( 𝑊(𝑖+1/2)

𝑛  
𝑙
,  𝑊𝑖+1/2

𝑛  
𝑟
) − 𝐺( 𝑊𝑖−1/2

𝑛  
𝑙
,  𝑊𝑖−1/2

𝑛  
𝑟
)  

(2.19) 

where 𝐺 is the numerical flux function evaluated at cell interfaces, and 𝑙 and 𝑟 denote the left and right states at the 

interfaces respectively. 𝐺  is defined as 

𝐺 𝑊𝑙 , 𝑊𝑟 =  
1

2
 𝑣 +  𝑣  𝐾 𝑣 𝑓𝑊𝑙

 𝑣 𝑑𝑣 +  
1

2
 𝑣 −  𝑣  𝐾 𝑣 𝑓𝑊𝑟

 𝑣 𝑑𝑣 
(2.20a) 

or 

𝐺 𝑊𝑙 , 𝑊𝑟 =  𝑣+𝑣𝑒 𝐾 𝑣 𝑓𝑊𝑙
 𝑣 𝑑𝑣 +  𝑣−𝑣𝑒 𝐾 𝑣 𝑓𝑊𝑟

 𝑣 𝑑𝑣 
(2.20b) 

This corresponds to a splitting between particles going from left to right (first term) and particles going from right to 

left (second term). Inserting the expression for 𝑓𝑤  (2.9) yields 

𝐺 𝑊𝑙 , 𝑊𝑟 = 𝐻+ 𝑊𝑙 + 𝐻−(𝑊𝑟) (2.21a) 

with 
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𝐻+ 𝑊𝑙 = 𝑛1𝑙 max 𝑈1𝑙 , 0  

1
𝑈1𝑙

𝑈1𝑙
2

𝑈1𝑙
3

 + 𝑛2𝑙max(𝑈2𝑙 , 0)  

1
𝑈2𝑙

𝑈2𝑙
2

𝑈2𝑙
3

  

𝐻− 𝑊𝑟 = 𝑛1𝑟 min 𝑈1𝑟 , 0  

1
𝑈1𝑟

𝑈1𝑟
2

𝑈1𝑟
3

 + 𝑛2𝑟min(𝑈2𝑟 , 0)  

1
𝑈2𝑟

𝑈2𝑟
2

𝑈2𝑟
3

  

 

 

 

(2.21b) 

The updated set of moments can be written as: 

𝑊𝑖
𝑛+1 =  𝐾 𝑣 𝑔 (𝑣)𝑑𝑣 

(2.22a) 

where 

𝑔 𝑣 = 𝑓𝑊𝑖
𝑛 − 𝜆  𝑣+𝑣𝑒𝑓𝑊 𝑖+1/2 𝑙

𝑛  𝑣 + 𝑣−𝑣𝑒𝑓𝑊 𝑖+1/2 𝑟
𝑛  𝑣 − 𝑣+𝑣𝑒𝑓𝑊 𝑖−1/2 𝑙

𝑛  𝑣 − 𝑣−𝑣𝑒𝑓𝑊 𝑖−1/2 𝑟
𝑛 (𝑣)  (2.22b) 

Using (2.9), 𝑔 𝑣  can be written in terms of weights and abscissas: 

𝑔 𝑣 =   𝑛𝑖𝛼
𝑛 𝛿(𝑣 − 𝑈𝑖𝛼

𝑛 )

2

𝛼=1

− 𝜆 𝑣+𝑣𝑒𝑛(𝑖+1/2)𝛼𝑙
𝑛 𝛿(𝑣 − 𝑈(𝑖+1/2)𝛼𝑙

𝑛 ) + 𝑣−𝑣𝑒𝑛(𝑖+1/2)𝛼𝑟
𝑛 𝛿(𝑣 − 𝑈(𝑖+1/2)𝛼𝑟

𝑛 )

− 𝑣+𝑣𝑒𝑛(𝑖−1/2)𝛼𝑙
𝑛 𝛿(𝑣 − 𝑈(𝑖−1/2)𝛼𝑙

𝑛 ) − 𝑣−𝑣𝑒𝑛(𝑖−1/2)𝛼𝑟
𝑛 𝛿(𝑣 − 𝑈(𝑖−1/2)𝛼𝑟

𝑛 ))   

 

 

(2.22c) 

In (2.22), 𝑔(𝑣) is an effective velocity distribution function and has different forms for different finite-volume 

schemes. Desjardins et al. [1] stated that any finite-volume scheme that guarantees positivity of 𝑔(𝑣), is realizable. 

Using this proposition, Desjardins et al. derived the realizability criterion for 1
st
-order finite-volume scheme. In the 

next section, the realizability criterion for 1
st
-order finite-volume scheme is revisited and the non-realizability 

problem with standard 2
nd

-order finite-volume scheme is discussed. For simplicity, the 1D version of schemes is 

discussed.  

 However, before the discussion on realizability or non-realizability of finite-volume schemes, certain important 

things must be stated. A non-realizable finite-volume scheme may not be non-realizable for all the problems. When 

a finite-volume scheme is said to be non-realizable, it just means that realizability for that scheme cannot be 

guaranteed for any general problem. However, there may still exit some problems for which a non-realizable scheme 

will always give a perfectly realizable set of moments. But, when a non-realizable scheme is used and the non-

realizability problem occurs at even one time level, the weights and abscissas are computed wrongly at that time 

level and the final numerical solution may be completely unphysical. Therefore, it is strongly advised to use 

realizable finite-volume schemes with models based on quadrature-based moment methods. 

 

2.5.1 First-order finite-volume scheme 
 The 1

st
-order finite-volume scheme for solving moment equations uses a piecewise constant approximation and 

is described in [1]. The weights and abscissas are assumed to be constant over a cell. For the 1
st
-order scheme, the 

interface terms in (2.19) can be written as: 
 𝑊𝑖+1/2

𝑛  
𝑙

= 𝑊𝑖
𝑛      𝑊𝑖+1/2

𝑛  
𝑟

=  𝑊𝑖+1
𝑛      𝑊𝑖−1/2

𝑛  
𝑙

= 𝑊𝑖−1
𝑛      𝑊𝑖−1/2

𝑛  
𝑟

= 𝑊𝑖
𝑛  (2.23) 

As shown in [1], the effective velocity distribution function for 1
st
 order finite volume scheme can be written as 

𝑔 𝑣 =  1 − 𝜆 𝑣  𝑓𝑊𝑖
𝑛  𝑣 + 𝜆𝑣+𝑓𝑊𝑖−1

𝑛  𝑣 − 𝜆𝑣−𝑓𝑊𝑖+1
𝑛  𝑣  (2.24) 

where 𝜆 = Δ𝑡/Δ𝑥. As the moments at time level 𝑛 are assumed to be realizable, the positivity of velocity 

distribution function at time level 𝑛 is guaranteed, i.e. 𝑓𝑊𝑖
𝑛  𝑣 > 0, 𝑓𝑊𝑖−1

𝑛  𝑣 > 0 and 𝑓𝑊𝑖+1
𝑛  𝑣 > 0. Also, 𝑣+ is 

always positive and 𝑣− is always negative. Hence, the positivity of 𝑔 𝑣  will be guaranteed if  1 − 𝜆 𝑣  > 0. 

When written in terms of abscissas, this condition becomes 

𝜆 <
1

max( 𝑈1𝑖
𝑛  ,  𝑈2𝑖

𝑛  )
 

(2.25) 

Desjardins et al. derived this condition in [1]. 

 
2.5.2 Second-order finite-volume scheme 

In 2
nd

-order finite-volume scheme, the MUSCL technique [32, 33, 36, 37] is used to obtain a piecewise linear 

reconstruction for weights and abscissas. The interface terms in (2.19) are constructed by 
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 𝑊𝑖−1/2
𝑛  

𝑙
= 𝑊𝑖−1

𝑛 +
1

2
𝜙 𝜌𝑖−1  𝑊𝑖

𝑛 − 𝑊𝑖−1
𝑛   

 𝑊𝑖−1/2
𝑛  

𝑟
= 𝑊𝑖

𝑛 −
1

2
𝜙 𝜌𝑖  𝑊𝑖+1

𝑛 − 𝑊𝑖
𝑛  

 𝑊𝑖+1/2
𝑛  

𝑙
= 𝑊𝑖

𝑛 +
1

2
𝜙 𝜌𝑖  𝑊𝑖+1

𝑛 − 𝑊𝑖
𝑛  

 𝑊𝑖+1/2
𝑛  

𝑟
= 𝑊𝑖+1

𝑛 −
1

2
𝜙 𝜌𝑖+1 (𝑊𝑖+2

𝑛 − 𝑊𝑖+1
𝑛 ) 

 

 

 

(2.26a) 

where 𝜙  is a limiter and the ratio 𝜌 is defined by 

𝜌𝑖 =
𝑊𝑖

𝑛 − 𝑊𝑖−1
𝑛

𝑊𝑖+1
𝑛 − 𝑊𝑖

𝑛  
(2.26b) 

Reconstruction without a limiter can introduce numerical oscillations by creating new local extrema. For the 

numerical results presented in this paper, the min-mod limiter [37] is used. The min-mod limiter can be written as: 

𝜙(𝜌) = max[0, min(1, 𝜌)]   with   lim𝜌→∞ 𝜙(𝜌) = 1 (2.27) 

 The effective velocity distribution function for 2
nd

-order finite-volume scheme can be obtained from (2.22c), by 

filling in appropriate values for weights and abscissas reconstructed at interfaces. However, in order to show that the 

standard 2
nd

 –order finite-volume scheme does not guarantee realizability, such an operation is not needed. On the 

right hand side of (2.22b), there are three positive terms (first, third and fourth) and two negative terms (second and 

fifth). For no particular value of 𝜆, the positivity of 𝑔 𝑣  can be guaranteed. Thus according to the proposition given 

in [1], standard 2
nd

 –order finite-volume scheme is not always realizable and the moments may go out of realizable 

space. If this happens, weights and abscissas cannot be computed accurately. 

2.6 Solution algorithm 
The specification of the source terms, the spatial fluxes and the boundary conditions provides a closed set of 

partial differential equations. A detailed solution algorithm for these partial differential equations can be found in 

[13]. Here a brief overview of the steps involved in the solution procedure is presented, assuming a single stage 

Euler explicit time integration. 

a) Initialize weights and abscissas in the domain 

b) Compute moments using weights and abscissas 

c) Compute time step size ∆𝑡 

d) Reconstruct weights and abscissas at cell faces 

e) Compute spatial flux terms at cell faces 

f) Advance moments by ∆𝑡 due to spatial flux terms using a finite-volume approach 

g) Compute weights and abscissas from moments using moment-inversion algorithm 

h) Advance weights by ∆𝑡 due to body force terms (drag and gravity) 

i) Compute moments using weights and abscissas 

j) Advance moments by ∆𝑡 due to collision terms 

k) Compute weights and abscissas from moments using moment-inversion algorithm 

l) Apply boundary conditions to weights and abscissas 

m) Repeat steps (c) through (l) at each time step. 

III. New realizable finite-volume schemes 
 

In general, all the terms of (2.22b) will not always sum up to a non-negative number. This is because some of the 

coefficients of  𝑓 are negative. However, the coefficients of all the terms are not of the same order of magnitude. By 

setting 𝜆 to a value less than 1, the coefficient of the first term can be made larger than the coefficients of the other 

four terms. Taking this fact into consideration, if somehow the two negative terms (second and fifth) in (2.22b) can 

be grouped together with the first term, adjusting 𝜆 to a proper value could be helpful in guaranteeing the positivity 

of effective velocity distribution function. More specifically, (2.22b) can be written as: 

𝑔 𝑣 = 𝑓𝑊𝑖
𝑛 − 𝜆𝑣+𝑣𝑒𝑓𝑊 𝑖+1/2 𝑙

𝑛  𝑣 + 𝜆𝑣−𝑣𝑒𝑓𝑊 𝑖−1/2 𝑟
𝑛  𝑣 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑠 (3.1) 

One such grouping can be done in the 1
st
-order finite-volume scheme because, 𝑊𝑖

𝑛 = 𝑊 𝑖+1/2 𝑙
𝑛 = 𝑊 𝑖−1/2 𝑟

𝑛 , which 

implies 𝑓𝑊𝑖
𝑛 = 𝑓𝑊 𝑖+1/2 𝑙

𝑛 = 𝑓𝑊 𝑖−1/2 𝑟
𝑛 . As in the standard 2

nd
-order finite-volume scheme, the cell averaged moment 

is not equal to reconstructed moments in cell 𝑖, any such grouping of terms is not possible. However, a similar 

grouping of terms is still possible under some constraints. (3.1) in terms of weights and abscissas can be written as: 
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𝑔 𝑣 =   𝑛𝑖𝛼
𝑛 𝛿(𝑣 − 𝑈𝑖𝛼

𝑛 ) − 𝜆𝑣+𝑣𝑒𝑛(𝑖+1/2)𝛼𝑙
𝑛 𝛿(𝑣 − 𝑈(𝑖+1/2)𝛼𝑙

𝑛 ) + 𝜆𝑣−𝑣𝑒𝑛(𝑖−1/2)𝛼𝑟
𝑛 𝛿(𝑣 − 𝑈(𝑖−1/2)𝛼𝑟

𝑛 ) 

2

𝛼=1

+ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑠 

 

 

(3.2) 

For any general reconstruction, other than 1
st
-order, 𝑛𝑖𝛼

𝑛 ≠ 𝑛(𝑖+1/2)𝛼𝑙
𝑛 ≠ 𝑛(𝑖−1/2)𝛼𝑟

𝑛  and 𝑈𝑖𝛼
𝑛 ≠ 𝑈(𝑖+1/2)𝛼𝑙

𝑛 ≠ 𝑈(𝑖−1/2)𝛼𝑟
𝑛  

However, for a special reconstruction where 𝑈𝑖𝛼
𝑛 = 𝑈(𝑖+1/2)𝛼𝑙

𝑛 = 𝑈(𝑖−1/2)𝛼𝑟
𝑛 , (3.2) simplifies to 

𝑔 𝑣 =    𝑛𝑖𝛼
𝑛 − 𝜆𝑣+𝑣𝑒𝑛(𝑖+1/2)𝛼𝑙

𝑛 + 𝜆𝑣−𝑣𝑒𝑛(𝑖−1/2)𝛼𝑟
𝑛  𝛿(𝑣 − 𝑈𝑖𝛼

𝑛 ) 

2

𝛼=1

+ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑠 

 

(3.3) 

If 𝜆 is chosen such that  𝑛𝑖𝛼
𝑛 − 𝜆𝑣+𝑣𝑒𝑛(𝑖+1/2)𝛼𝑙

𝑛 + 𝜆𝑣−𝑣𝑒𝑛(𝑖−1/2)𝛼𝑟
𝑛  > 0, 𝑔 𝑣  will always be non-negative and 

hence realizability of the corresponding finite-volume scheme can be guaranteed. This marks a significant 

improvement in the accuracy of solutions using quadrature-based moment methods. Over the years, many high-

order finite-volume schemes have been developed [32, 33, 34, 35, 36, 37, 38, 39, 40, 41] for convection dominated 

problems in the field of fluid dynamics. But the researchers using quadrature-based moment methods have not been 

benefited by these high-order schemes because of the non-realizability limitation. However, with the new approach, 

all the already existing information about high-order finite-volume schemes can be utilized for solutions using 

quadrature-based moment methods. 

 To summarize, a 𝑝𝑡𝑕 -order realizable finite-volume scheme uses a 𝑝𝑡𝑕 -order reconstruction for weights and a 

1𝑠𝑡 -order reconstruction for abscissas along with a constraint on 𝜆. The constraint on 𝜆, or the realizability criterion, 

for any general case is derived in the next section. Before the constraints are derived, certain important things about 

the new realizable finite-volume scheme must be stated.  

 Firstly, a 𝑝𝑡𝑕 -order realizable finite-volume scheme is not exactly 𝑝𝑡𝑕 -order accurate because of the 1
st
-order 

reconstruction used for abscissas. The scheme can hence be thought of as a quasi-𝑝𝑡𝑕 -order scheme. However, said 

that, it must be stressed that, the abscissas that are used in practical problems are often nearly constant over a range 

of cells. So even if mathematically speaking, the new scheme may not be 𝑝𝑡𝑕 -order accurate for more general 

problems, for most practical problems, it is as good as the 𝑝𝑡𝑕 -order scheme. This fact is demonstrated in the section 

on numerical results. 

 Secondly, the realizability constraint on 𝜆 can be applied in two ways. In the first approach, ∆𝑡 should be 

computed in each cell satisfying the realizability criterion for quasi-𝑝𝑡𝑕 -order scheme and then the minimum ∆𝑡 

should be used to advance the solutions. In the second approach, ∆𝑡 should be computed by satisfying the 

realizability criterion for the 1
st
-order scheme (2.25). Then a check should be made as to whether that ∆𝑡 satisfies the 

realizability criterion for a quasi-𝑝𝑡𝑕 -order accurate scheme. For the cells in which ∆𝑡 computed using the 

realizability criterion of the 1
st
-order scheme does not satisfy the realizability criterion for a quasi-𝑝𝑡𝑕 -order scheme, 

1
st
-order reconstruction for weights instead of 𝑝𝑡𝑕 -order reconstruction should be used. The later approach is used in 

the numerical simulations in this paper because it is more suitable for multi-stage time-integration. 

3.1 Realizability condition for 1D cases 
 The realizability condition should be satisfied for each quadrature node separately. If in a given cell realizability 

condition fails for any quadrature node, first order reconstruction should be used for the weight corresponding to 

that quadrature node. For 1D case with two-node quadrature following two conditions should be satisfied: 

 𝑛𝑖1
𝑛 − 𝜆𝑣+𝑣𝑒𝑛(𝑖+1/2)1𝑙

𝑛 + 𝜆𝑣−𝑣𝑒𝑛(𝑖−1/2)1𝑟
𝑛  > 0 

 𝑛𝑖2
𝑛 − 𝜆𝑣+𝑣𝑒𝑛(𝑖+1/2)2𝑙

𝑛 + 𝜆𝑣−𝑣𝑒𝑛(𝑖−1/2)2𝑟
𝑛  > 0 

 

(3.4) 

Replacing 𝑣+𝑣𝑒  and 𝑣−𝑣𝑒  with max(𝑈𝑖1 , 0) and min(𝑈𝑖1 , 0) respectively, (3.4) reduces to 

 𝑛𝑖1
𝑛 − 𝜆 max(𝑈𝑖1 , 0) 𝑛(𝑖+1/2)1𝑙

𝑛 + 𝜆 min(𝑈𝑖1 , 0) 𝑛(𝑖−1/2)1𝑟
𝑛  > 0  

 𝑛𝑖2
𝑛 − 𝜆 max(𝑈𝑖2 , 0) 𝑛(𝑖+1/2)2𝑙

𝑛 + 𝜆 min(𝑈𝑖2 , 0) 𝑛(𝑖−1/2)2𝑟
𝑛  > 0 

 

(3.5) 

3.2 Realizability condition for 2D cases 
 A more general form for (3.5) can be written as: 

 𝑛𝑖𝛼
𝑛 − 𝜆 𝑋(𝑊(𝑖+1/2)𝛼𝑙

𝑛 , 0) − 𝑋(0, 𝑊(𝑖−1/2)𝛼𝑟
𝑛 )  > 0 (3.6a) 

where definition of 𝑋 is similar to G and is given by 

𝑋 𝑊𝛼𝑙 , 𝑊𝛼𝑟  = 𝑌+ 𝑊𝛼𝑙  + 𝑌−(𝑊𝛼𝑟 ) (3.6b) 

with 

𝑌+ 𝑊𝛼𝑙  = 𝑛𝛼𝑙 max 𝑈𝛼𝑙 , 0     and    𝑌− 𝑊𝛼𝑟  = 𝑛𝛼𝑟 min 𝑈𝛼𝑟 , 0  (3.6c) 

For 2D cases a more general form of (3.6) can be written as: 
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 𝑛𝑖𝛼
𝑛 − 𝜆 𝐹𝑙𝑢𝑥𝛼

𝑛

 
 > 0 

(3.7) 

where summation is over all the faces of 𝑖𝑡𝑕  cell. In (3.7), for calculating the fluxes at faces only the reconstructed 

abscissas on the interior sides (side towards 𝑖𝑡𝑕  cell) of faces should used, the ones on the opposite side should be set 

to zero. In other words, the flux in (3.7), is the outgoing flux for  𝑖𝑡𝑕  cell and the flux coming in from neighboring 

cells should not be accounted for. 

 Consider a simple 2D case, shown in Figure 1. For the sake of simplicity subscript 𝛼 and superscript 𝑛 will be 

dropped. Cell 0 has four neighbours – Cell 1, Cell 2, Cell 3, Cell 4 - and  the reconstructed values of weights on 

inner sides of corresponding faces are 𝑛01 , 𝑛02 , 𝑛03 , 𝑛04  respectively. The cell averaged weight for 0𝑡𝑕  cell is 𝑛0 

and the corresponding X and Y abscissas are 𝑈0 and 𝑉0 respectively. The realizability condition for this case can be 

written as: 

 𝑛0 − 𝜆 𝑛01𝐴1 max 𝑈0, 0 + 𝑛02𝐴2 max 𝑉0, 0 − 𝑛03𝐴3 min 𝑈0 , 0 − 𝑛04𝐴4min(𝑉0 , 0)  > 0 (3.8) 

where 𝐴1, 𝐴2, 𝐴3, 𝐴4 are areas of the four faces. Note for 2D case 𝜆 =  Δ𝑡/𝑣𝑜𝑙𝑖  where 𝑣𝑜𝑙𝑖  is the volume of 𝑖𝑡𝑕  cell. 

The same realizability condition can be used for 3D cases as well. 

3.3 High-order realizable schemes 
Here a brief overview of two realizable schemes in 2D and one realizable scheme in 1D is presented. The basic 

idea is to use high-order reconstruction for weights but piecewise constant reconstruction for abscissas. In fact, the 

following modifications can be made to step (d) in solution algorithm mentioned above. 

 

d) Reconstruct weights at cell faces using any high-order reconstruction. Use first-order reconstruction for abscissas. 

Check the realizability condition in cells. For the cells in which realizability condition fails, use first order 

reconstruction for weights. 

 

 With this modification in the solution algorithm, any arbitrarily high-order finite-volume scheme can be used for 

quadrature-based moment method. This is a significant step, as it makes all the high-order finite-volume schemes 

developed for fluid flows automatically applicable to quadrature-based moment methods as well. This paper 

presents results for quasi-2
nd

-order scheme and quasi-3
rd

-order scheme for 1D. For 2D, numerical results using 

quasi-2
nd

-order scheme is presented. 

 For 1D cases, both the new schemes - quasi-2
nd

-order and quasi-3
rd

-order – are obtained using MUSCL 

technique [32, 33, 36, 37]. For quasi-2
nd

-order scheme, a piecewise-linear reconstruction is used for weights while 

for quasi-3
rd

-order scheme, a piecewise-parabolic reconstruction is used for weights. In both the schemes, a min-

mod limiter is used to avoid creation of any new local extrema. 

 In quasi-2
nd

-order reconstruction for 2D, a least-squares reconstruction [35] is used for weights using the 

adjacent cell values. Moreover, a Barth limiter [40] is applied to the least-squares reconstruction to avoid spurious 

oscillations. 

IV. Numerical results 
 

In this section several results are presented for 1D and 2D cases. For all the cases a 2
nd

-order Runge-Kutta 

scheme has been used for time integration. Periodic boundary conditions have been used for all 1D cases while for 

the 2D case a combination of wall and fix-all boundary conditions is used. The domain for all 1D cases is defined by 

x ϵ [-1, 1]. All the simulations just consider the spatial flux terms. Collisions and body force terms are not included. 

4.1 Order of accuracy study 
 Here order of accuracy of the standard and the new schemes is discussed. Results in this section are based on 

simple 1D cases for which analytical solutions exist. L1 errors are calculated by comparing the numerical solution 

with the analytical solution for mean density (𝑀0 =  𝑛𝛼𝛼 ). L1 errors and order of convergence are presented for 

four schemes – 1
st
-order, standard 2

nd
-order, quasi-2

nd
-order, quasi-3

rd
-order. Table 1 and Table 2 show the results 

for 1-node quadrature and 2-node quadrature respectively. For 1-node quadrature, initial weight (𝑛) and abscissa (𝑈) 

are given as: 

𝑛 = 1.0 + sin(𝜋𝑥) 

𝑈 = 1.0 

(4.1) 

For 2-node quadrature, initial weights (𝑛1, 𝑛2) and abscissas (𝑈1, 𝑈2) are given as: 

for x < 0: 𝑛1 =  sin(𝜋𝑥) , 𝑛2 = 0, 𝑈1 = 1, 𝑈2 = 0 (4.2) 
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for x > 0: 𝑛1 = 0, 𝑛2 =  sin(𝜋𝑥) , 𝑈1 = 0, 𝑈2 = −1 

It is observed that formal order of accuracy can be obtained for 1-node quadrature but as the number of quadrature 

nodes is increased, order of accuracy for all the schemes reduces. Although the reason for this loss of order of 

accuracy has not been studied extensively, it is attributed to the combined effect of an increase in the number of 

equations and use of moment inversion algorithm for ill-conditioned points. At many points the values of weights 

are very small and the non-linear equations solved using the moment-inversion algorithm is often ill-conditioned for 

these points in case of multiple quadrature nodes. It can also be observed that quasi-2
nd

-order scheme always has 

approximately the same order of convergence as standard 2
nd

-order scheme, and quasi-3
rd

-order scheme is better 

compared to both. 

4.2 Grid convergence study 
In this section, grid convergence studies for quasi-2

nd
-order and quasi-3

rd
-order schemes in 1D are presented. For 

both the schemes, mean density obtained using different grid resolutions is compared with the analytical solution. 

Four different grids have been considered with the number of cells equal to 25, 50, 100, 200. The comparisons have 

been done for a 2-node quadrature case with the same initializations as in (4.2). Figure 2(a) and 2(b) show grid 

convergence for quasi-2
nd

-order and quasi-3
rd

-order schemes respectively. As the number of grid cells is increased, 

solutions using both the schemes converge towards the analytical solution. 

4.3 Comparison of 1D results for a case where abscissas are constant 
For this case, 2-node quadrature is used with weights being sinusoidal functions and abscissas being square 

functions. There are 50 grid points along x axis. The initial (t=0) conditions are shown in Figure 3(a), while Figure 

3(b) and 3(c) show the final conditions for mean density and mean velocity respectively (t=1). The weight 

distribution is symmetric about x=0, with the left wave moving towards the right (-ve abscissa) and the right wave 

moving towards the left (+ve abscissa). The final time has been chosen such that the waves coalesce at x=0 and then 

separate again. Four different schemes have been compared - 1
st
-order, standard 2

nd
-order, quasi-2

nd
-order, quasi-3

rd
-

order. The standard 2
nd

-order and quasi-2
nd

-order results are on top of each other. As the abscissas are constant over 

a range of cells, this was inferred in one of the previous sections. Also, the quasi-3
rd

-order scheme shows an 

improvement over the quasi-2
nd

-order scheme. 

4.4 Comparison of 1D results for a case where abscissas are continuously varying 
For this case, 4-node quadrature  is used with weights being constant and abscissas being sinusoidal functions. 

The number of grid cells for 1
st
-order scheme is 300. For the standard 2

nd
-order and quasi-2

nd
-order schemes the 

number of grid cells is 150 while for quasi-3
rd

-order it is 100. The initial (t=0) conditions are shown in Figure 4(a) 

while Figure 4(b) and 4(c) show final conditions for density and mean velocity respectively (t=1). This case shows 

the non-realizability problem with standard 2
nd

-order-scheme. The results obtained using standard 2
nd

-order scheme 

are quite different from the others. Also, the mean density plot for quasi-2
nd

-order scheme is asymmetric about x=0. 

For the standard 2
nd

-order scheme, realizabilty of moments is not guaranteed and if the moments go out of realizable 

space, which is what is happening here, weights and abscissas are not coupled accurately. Although this does not 

happen all the time, but because realizability is not guaranteed, this can cause wrong computation at any one time 

step and thereafter the numerical solution strays away from the correct physical solution. 

4.5 Comparison of 2D Results 
2D results for a dilute impinging-jet problem is presented. The domain consists of a square (7x7) box with two 

openings on the bottom wall through which jets enter. As the time progresses, the jets cross each others, strike the 

wall and then rebound. These simulations have been done using 4-node quadrature – (𝑛1, 𝑈1, 𝑉1), (𝑛2, 𝑈2, 𝑉2), (𝑛3, 

𝑈3, 𝑉3), (𝑛4, 𝑈4, 𝑉5). The values of weights and abscissas at left opening are: 

𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 0.1 

𝑈1 =1.001, 𝑈2 = 0.999, 𝑈3 = 1.0, 𝑈4 = 1.0 

𝑉1 = 1.001, 𝑉2 = 1.0, 𝑉3 = 0.999, 𝑉4 = 1.0 

 

(4.3a) 

and the values at right opening are: 

𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 0.1 

𝑈1 = −1.001, 𝑈2 = −0.999, 𝑈3 = −1.0, 𝑈4 = −1.0 

𝑉1 = 1.001, 𝑉2 = 1.0, 𝑉3 = 0.999, 𝑉4 = 1.0 

 

(4.3b) 

Inside the domain, the weights and abscissas are initialized as: 

𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 0.001  

(4.3c) 
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𝑈1 = −0.001, 𝑈2 = 0.001, 𝑈3 = 0.0, 𝑈4 = 0.0 

𝑉1 = 0.001, 𝑉2 = 0.0, 𝑉3 = −0.001, 𝑉4 = 0.0 

Results are presented for 1
st
-order and quasi-2

nd
-order schemes. A computational grid with 2562 triangular cells is 

used. The solution obtained using 1
st
-order scheme is highly diffusive. The improvement in the solution using quasi-

2
nd

-order scheme is clearly evident. 

V. Conclusions 
Heretofore, the use of finite-volume schemes in quadrature-based moment methods was limited to 1

st
-order 

scheme because of the non-realizability problem. But the use of 1
st
-order scheme often leads to highly diffused 

numerical solutions. Over the years, a huge amount of research has been done for developing high-order finite-

volume schemes in the field of Computational Fluid Dynamics. However, the issue of non-realizability, has often 

acted as a barrier, making the high-order finite-volume schemes inaccessible to those who use models based on 

quadrature-based moment methods. In the present work, the barrier has been broken by proposing a generalized idea 

to develop any arbitrarily high-order realizable finite-volume scheme. According to the new idea, a 𝑝𝑡𝑕 -order 

realizable finite-volume scheme can be constructed using a 𝑝𝑡𝑕 -order reconstruction for weights and a 1𝑠𝑡 -order 

reconstruction for abscissas along with a realizability criterion. Using this approach, a realizable finite-volume 

scheme of any arbitrary order can be developed. This marks a significant step as it makes all the high-order finite-

volume schemes, developed over the years for fluid flows, automatically accessible to researchers using quadrature-

based moment methods. 
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Table 1. 𝑳𝟏 error and order of accuracy of schemes using 1-node quadrature 
 

Grid Size 𝐿1 error Order 

1st-order scheme 
25 0.208472 - 

50 0.113948 0.87 

100 0.059817 0.93 

200 0.030652 0.96 

standard 2nd-order scheme 
25 0.051274 - 

50 0.016097 1.67 

100 0.004729 1.77 

200 0.001274 1.89 
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quasi-2nd-order scheme 

25 0.051274 - 

50 0.016097 1.67 

100 0.004729 1.77 

200 0.001274 1.89 

quasi-3rd-order scheme (without limiter) 
15 0.011729 - 

25 0.002664 2.90 

50 0.000379 2.81 

100 0.000066 2.53 

quasi-3rd-order scheme 

25 0.008800 - 

50 0.002060 2.10 

100 0.000422 2.29 

200 0.000086 2.29 

 

Table 2. 𝑳𝟏 error and order of accuracy of schemes using 2-node quadrature 
 

Grid Size 𝐿1 error Order 

1st-order scheme 
25 0.210181 - 

50 0.148959 0.50 

100 0.091377 0.71 

200 0.051817 0.82 

standard 2nd-order scheme 
25 0.075606 - 

50 0.029146 1.38 

100 0.011892 1.29 

200 0.0004583 1.38 

quasi-2nd-order scheme 

25 0.075606 - 

50 0.029146 1.38 

100 0.011885 1.29 

200 0.004583 1.37 

quasi-3rd-order scheme 

25 0.023668 - 

50 0.009264 1.35 

100 0.002929 1.66 

200 0.000978 1.58 

 

 

 
 

Figure 1. Cells with faces aligned along Cartesian axes 
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(a) Quasi-2nd-order scheme 

 
(b) Quasi-3rd-order scheme 

 
Figure 2. Grid convergence study 
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(a) Initial mean density and velocity 

 
(b) Final mean density 
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© Final mean velocity 

 
Figure 3. Comparison of schemes for constant abscissa case 
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(a) Initial mean density and velocity 

 
(b) Final mean density 
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(c) Final mean velocity 

 
Figure 4. Comparison of schemes for variable abscissa case 

 

 

 

 

 
(a) Grid (2562 cells) 
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(b) Mean density using 1st-order scheme (t = 4) 

 
(c) Mean density using 1st-order scheme (t = 7) 

 
(d) Mean density using quasi-2nd-order scheme (t = 4) 

 
(e) Mean density using quasi-2nd-order scheme (t = 7) 

 
Figure 5. Dilute impinging jets (2D) 

 
 


