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ABSTRACT 
 
The discontinuous Galerkin (DG) and spectral volume 
(SV) methods are two classes of high-order methods for 
conservation laws capable of handling unstructured 
grids. In this paper, we evaluate their performance for 
scalar conservation laws in both one and two 
dimensions in terms of accuracy, and efficiency. We 
first review the basic features of the two methods, and 
compare their similarities and differences. Then we 
estimate the number of operations for each method in 
two dimensions. Finally, some numerical results in 
accuracy and CPU time are presented to support our 
estimates. 
 

1. INTRODUCTION 
 

It is well known that nature is governed by many 
conservation laws. The motion of fluids is no exception. 
The governing principles for fluids in motion are the 
conservation of mass, momentum and energy. 
Therefore, progresses made in computational methods 
for conservation laws can significantly impact the 
numerical simulation of numerous physical phenomena 
in nature, including fluid dynamics, combustion, 
acoustic waves, electromagnetics. “Real world” fluid 
mechanics and transport problems of interest have 
invariably very complex physics and geometry. Over 
the last one and half decades, unstructured grid methods 
[1-6] have demonstrated their potential in handling 
complex geometries with or without complex physics. 
There is a definite trend in moving from structured 
grids (body-fitted-coordinate grids) to unstructured 
grids for problems with complex geometries in 
computational fluid dynamics (CFD), because of the 
geometric flexibility offered by unstructured grids. 
However, most of these unstructured grid methods have 
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only second-order accuracy. In many applications such 
as computational aeroacoustics (CAA), computational 
electromagnetics (CEM), large eddy simulation and 
direct numerical simulation of turbulence, higher-order 
accurate methods are required. There have been 
extensive research efforts into high-order methods for 
conservative laws on unstructured grids since the mid 
1980s. Successful examples include the spectral 
element method [7] or multi-domain spectral method 
[8], k-exact finite volume (KEFV) method [2] and 
WENO method [9], the DG method [10-11], 
unstructured spectral method [12], fluctuation-splitting 
(FS) method [13], and recently the spectral volume 
method [14-15]. These methods have been used 
successfully in a variety of applications. Among these 
methods, the DG, KEFV, WENO and SV methods 
appear to be capable of handling unsteady 
discontinuities, while the DG and SV methods seem to 
be the most efficient.  Therefore, our focus will be on 
the DG and SV methods in this paper.  
 
The DG method is a finite element method using 
discontinuous solution and test spaces (usually 
piecewise polynomials of suitable degree), which 
means that the state variable usually is not continuous 
across element boundaries. The fluxes through the 
element boundaries are the computed using an 
approximate Riemann solver, mimicking the successful 
Godunov finite volume method [16]. Due to the use of 
Riemann fluxes across element boundaries, the DG 
method is fully conservative. However, high order 
surface and volume integrals are necessary in the DG 
method, which may be expensive to compute. 
 
The SV method [14,15] is ultimately a finite volume 
method. Each triangular grid cell is partitioned into 
subcells named control volumes (CVs). The macro 
triangular cell is named a spectral volume (SV). Mean 
state-variables at the CVs inside a SV are employed to 
construct a high-order polynomial, which is then 
utilized to update the means at the CVs. The SV 
method is fully conservative at the control volumes.  
 
In this paper, we perform a detailed evaluation of the 
DG and the SV methods for conservation laws on 
unstructured grids. In the next two sections, we review 
the major features of these two methods for scalar 
conservation laws in two dimensions. In Section 4, we 
estimate the number of operations for both methods. In 
Section 5, several numerical test cases in both 1D and 
2D are presented. The numerical order of accuracy and 
CPU timing are shown to verify the estimates. Finally, 
several concluding remarks based on the current study 
are summarized in section 6. 
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2. DISCONTINUOUS GALERKIN METHOD 
 

Consider the following two-dimensional conservation 
laws 
 

),0(,0 TFut ×Ω=•∇+                       (1) 
 

equipped with proper initial and boundary conditions. 
In (1), ),( gfF =  is the flux vector. By multiplying by 
a test function v, integrating over the domain Ω, and 
performing an integration by parts we obtain the 
following weak statement of the problem 
 

vdVuFvdSuvFdVvut ∀=•∇−•+ ∫∫∫
ΩΩ∂Ω

,0)()( n  (2) 

 
 A discrete analogue of (2) can be obtained by 
subdividing Ω into N non-overlapping triangular 
elements {Ti}, and by considering functions uh and vh, 
defined within each element, given by the combination 
of n polynomial shape functions jφ , 
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The expansion coefficients j

hu  denote the degrees of 
freedom (DOFs) of the numerical solution for element 
Ti. Note that there is no global continuity requirement 
for uh, which is generally discontinuous across the 
element boundaries. By splitting the integral over Ω in 
(2) into the sum of integrals over the elements and by 
admitting only the functions uh and vh, we obtain the 
semi-discrete equation for Ti  
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Equ. (4) must be satisfied for any function vh. Since jφ  
is the basis for vh, (4) is equivalent to the following 
system of n equations  
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Because the approximate solution is discontinuous 
along the element boundaries, the interface flux is not 
uniquely defined. It is at this stage the Riemann fluxes 
used in Godunov finite volume schemes are borrowed. 
 

The interface flux function n•)( huF  is replaced by a 

Riemann flux ),,(ˆ n+−
hh uuF . In order to guarantee 

consistency and conservation, the Riemann flux must 
satisfy 

 
),,(ˆ),,(ˆ)(),,(ˆ nn n,n −−=•= uvFvuFuFuuF .   (6) 

 
The surface and volume integrals are computed with 
Gauss quadrature formulas of suitable order of 
accuracies.  

 
By assembling together all the elemental contributions, 
the system of ordinary differential equations which 
govern the evolution in time of the discrete solution can 
be written as 
 

)(UR
dt

dU
= .                          (7) 

 
where U is the global vector of the degrees of freedom, 
and R(U) is the residual vector. 
 
Time Integration 
An explicit multi-stage third-order TVD (total variation 
diminishing) Runge-Kutta scheme is employed for time 
integration [17]. The Runge-Kutta scheme can be 
expressed in the following form: 
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3. SPECTRAL VOLUME METHOD 

 
In the SV method, the element Ti is named a spectral 
volume, which is further partitioned into subcells named 
control volumes (CVs), indicated by Ci,j, as shown in 
Figure 1. To represent the solution as a polynomial of 
degree m in two dimensions (2D) we need M = 
(m+1)(m+2)/2 pieces of independent information, or 
degrees of freedom (DOFs). The DOFs in a SV method 
are the volume-averaged mean variables at the M CVs. 
For example, to build a quadratic reconstruction in 2D, 
we need at least (2+1)(3+1)/2 = 6 DOFs. There are 
numerous ways of partitioning a SV, and not every 
partition is admissible in the sense that the partition 
may not be capable of producing a degree m 
polynomial. Once M mean solutions in the CVs of an 
admissible SV are given, a unique polynomial 
reconstruction can be obtained from 
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where mi Pyxp ∈),(  (the space of polynomials of 
degree m or less), NjPyxL mj ,,1,),( L=∈  are the 
“shape” functions satisfying 
 

  jkji
C

k VdVyxL
ji

δ,

,

),( =∫ .                    (10) 

 
where Vi,j is the volume of Ci,j. This high-order 
polynomial reconstruction facilitates a high-order 
update for the mean solution of each CV. Integrating 
(1) in each CV, we obtain 
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where K is the total number of faces in Ci,j, and jiu ,

 

is 
the volume-averaged solution at Ci,j. The flux integral 
in (11) is then replaced by a Gauss-quadrature formula 
which is exact for polynomials of degree m 
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where ne is the number of quadrature points on the r-th 
face,  wrq are the Gauss quadrature weights, (xrq, yrq) are 
the Gauss quadrature points. Since the reconstructed 
polynomials are piece-wise continuous, the solution is 
usually discontinuous across the boundaries of a SV, 
although it is continuous across interior CV faces. The 
fluxes at the interior faces can be computed directly 
based on the reconstructed solutions at the quadrature 
points. The fluxes at the boundary faces of a SV are 
computed using approximate Riemann solvers given the 
left and right reconstructed solutions.  
 
It has been shown [14] that order of accuracy of this SV 
scheme is (m+1)th order. In addition, the scheme is 
compact in the sense that a high-order polynomial is 
reconstructed in each SV without using any data from 
neighboring SVs. This property can potentially translate 
into significantly reduced communication cost 
compared to a k-exact FV scheme (for example) when 
implemented on parallel computers.  
 
4. NUMBER OF OPERATIONS FOR DG AND SV 
 
In order to provide a precise estimate of the number of 
operations for both methods, we need to specify the 
form of the flux vector. We assume scalar conservation 

laws, i.e., F = (au, bu), where a and b are given 
constants. In addition, the numerical flux is computed 
using the Lax-Friedrich’s flux, i.e., 
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where n = (nx, ny). We use the total number of 
multiplications and if statements as the number of 
operations. Therefore, once the state variable is 
computed, the analytical flux takes 3 operations while 
the Riemann flux costs 4 operations to compute (one 
operation is the ‘if’ statement). 
 
4.1 Number of Operations of the DG Method  
We consider linear, quadratic and cubic elements, 
which yield second, third and fourth-order spatial 
accuracy respectively. The DOFs for these elements are 
given in Figure 2. The residual vector for element Ti 
takes the following form 
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where W is the mass matrix. Let k be the order of 
accuracy, n be the number of degrees of freedom on 
each element, nv be the number of quadrature points for 
the volume integral, and ns be the number of quadrature 
points for the surface integral on each face. The total 
number of operations can be divided into three main 
parts, corresponding to the cost for surface integral 
(N1), volume integral (N2), and mass matrix 
multiplication (N3). N1 consists the number of 
operations needed to compute the state variable at the 
quadrature points (n*ns*3), the operations to compute 
the Riemann fluxes [(2+2*ns)*3/2], and the operations 
to multiply the Riemann fluxes with the test functions 
(3*n*ns). Note that the Riemann fluxes are shared by 
two neighboring elements. Therefore, we have 
 

3361 +⋅+⋅⋅= nsnnsN . 
 
N2 is composed of the number of operations to compute 
the state variable at the quadrature points (n*nv), plus 
the operations to calculate the fluxes at these quadrature 
points (nv*4), and the operations to multiply the fluxes 
with the gradients of the test functions (2*nv*n). So we 
get 
 

)43(2 +⋅⋅= nnvN . 
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N3 is simply the cost of a square matrix multiplying a 
vector, which is n*n. Therefore the total cost to 
compute the residual vector for a single element is 
 

nnnnvnsnns
NNNN

⋅++⋅⋅++⋅+⋅⋅=
++=

)43(336
321  

 
The operations for the DG schemes of second to fourth 
orders are listed in Table 1. 

 
Table 1. Number of Operations for the DG Method 

 
k 

(order) 
n nv ns N 

2 3 3 2 93 
3 6 6 3 288 
4 10 12 4 763 

 
4.2 Number of Operations of the SV Method 
The degrees of freedom in the SV method are the mean 
state variables at the control volumes. They are updated 
directly with a finite volume algorithm. Therefore the 
residual vector takes the following form 
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There are two kinds of faces in a SV. The faces that lie 
on the SV boundaries are called Riemann faces, 
because the state variables are discontinuous across 
these faces. The other faces that lie inside a SV are 
named continuous faces because the state variables are 
continuous across these faces. Denote the total number 
of faces in a SV with nf, and number of Riemann faces 
nr. Then the number of continuous faces is (nf-nr). Let 
the number of quadrature points on each face (edge) be 
ne. Then the number of operations to compute the state 
variables at all the quadrature points is nf*ne*n. The 
number of operations to compute the Riemann fluxes is 
ne*nr*3/2. Again the Riemann fluxes are shared by two 
different SVs. The number of operations to compute the 
analytical fluxes is simply ne*(nf-nr)*2. Therefore the 
total number of operations to compute the residuals of a 
spectral volume is 
 

2)(2/3 ⋅−⋅+⋅⋅+⋅⋅= nrnfnenrnennenfN  
 
The operations for the SV schemes of second to fourth 
orders are listed in Table 2. 
 

 

 
Table 2. Number of Operations for the SV Method 

 
k 

(order) 
n ne nf nr N 

2 3 1 9 6 42 
3 6 2 15 9 231 
4 10 2 27 12 636 

 
Note that the SV method is about 20-100% faster than 
the DG method.  
 

5. NUMERICAL RESULTS 
 
All of the computations were performed on a Pentium 
IV 2.0 GHz PC running the Redhat Linux 7.2 operating 
system. The code was written in C++, optimized and 
compiled with the default gcc compiler. 
 
5.1 One-Dimensional Cases 
We first test the DG and SV methods in one dimension 
for the following linear wave equation 
 

110 <<−=+ xuu xt  
)sin()0,( xxu π=  

with periodic boundary conditions. The computation 
was performed until t = 1. The errors are computed 
based on the cell-averaged state variable on the element 
or the SV. Table 3 and 4 present the errors and CPU 
times for the DG and SV schemes respectively. Figure 
4 shows that the SV method requires much less CPU 
time to achieve a given level of accuracy.  Note that 
both methods have the expected numerical order 
accuracy. The DG method gives slightly smaller 
magnitude than the SV method in several cases. 
However, SV method is significantly faster than the DG 
method. 
 
Next the performance of both methods for the Burger’s 
equation 

110)2
2
1( <<−=+ xxuut  

)sin(
2
11)0,( xxu π+=  

 
is investigated. The boundary condition is again 
periodic. The computational was carried out until t = 
0.3, when the solution is still smooth. The errors for 
both methods are summarized in Tables 5 and 6. Again 
the expected order of accuracy is obtained for both 
methods. It is interesting to note that the 4th order SV 
schemes has lower errors than the 4th order DG scheme, 
while DG gives smaller errors in the other cases. 
Generally speaking, the DG and SV methods have 
comparable accuracy.  
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5.2 Two-Dimensional Cases 
We first test the performance of both methods for the 
following linear equation 
 

20,20;0 <<<<=++ yxu yu xut  
))(sin()0,,( yxyxu += π , periodic boundary condition 

 
The numerical simulation was carried out until t = 1 on 
two different grids, one regular and one irregular as 
shown in Figure 3. The errors are computed based on 
the cell-averaged state variable on the element or the 
SV. Tables 7 and 8 present the errors of both methods 
on the regular mesh, while Tables 9 and 10 displays the 
errors on the irregular mesh. Note that both methods 
achieved the designed numerical order of accuracy. The 
DG method gives smaller error magnitudes, while the 
SV method is faster. 
 
Finally we test the performance of both methods for the 
non-linear Burger’s equation 
 

0=++ yxt uuuuu , 20,20 <<<< yx  

))(sin(
2
1

4
1)0,,( yxyxu ++= π ,  periodic. 

 
Only the results on the irregular mesh are presented 
here. In the first test, the simulation was performed 
until t = 0.1, when the solution is still smooth. The 
errors are documented in Tables 11 and 12. To test the 
performance of the TVB limiters [15], the simulation 
was also performed until t = 0.45, when a shock wave 
appeared in the solution. The solution errors in the 
smooth region [-0.2, 0.4]x[-0.2,0.4] are computed and 
presented in Tables 13 and 14. Again, both methods 
achieved the designed numerical order of accuracy. The 
DG method gives smaller error magnitudes, while the 
SV method is faster. 

 
6. CONCLUDING REMARKS 

 
The DG and SV methods are evaluated for scalar linear 
and nonlinear conservation laws in both one and two 
dimensions. Both methods can achieve the designed 
order of accuracy in both 1L and ∞L norms for the 
problems simulated. For 2D scalar conservation laws, 
the SV method is about 20% - 100% more efficient than 
the DG method. However, with the same number of 
degrees of freedom, the DG method has lower 
discretization errors. Taking into account of larger 
stability limit and increased resolution for 
discontinuities, the SV method compares favorably 
against the DG method in terms of the achievable 
accuracy versus CPU time.   
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(a) Linear SV 

 

d  
(b) Quadratic SV 

d  
(c) Cubic SV 

Figure 1. SVs of various degrees 
 

 
Figure 4a. Error versus CPU Time , 3rd order 

 
Figure 4b. Error versus CPU Time , 4th order 

 
(a) Linear element 

 

 
 

(b) Quadratic element 
 

 
 

(c) Cubic element 
 

Figure 2. The Degrees of Freedom in DG 
 

 
(a) Regular 

 
(b) Irregular 

 
Figure 3. Regular and irregular meshes 
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Table 3. Errors and CPU time on the 1D linear wave equation at t = 1 using the DG method 

 
Order of 
accuracy 

  NDOF 1L  error 1L  order ∞L  error  ∞L  order CPU 
(seconds) 

     20 1.45e-02 --- 2.19e-02 --- 2.97e-03 
     40 3.21e-03 2.18 5.01e-03 2.13 1.13e-02 
     80 7.39e-04 2.12 1.16e-03 2.11 4.75e-02 
    160 1.76e-04 2.07 2.77e-04 2.07 1.76e-01 
    320 7.96e-05 2.03 1.26e-04 2.03 6.91e-01 

 
 

2 
     

    640 1.07e-05 2.01 1.67e-05 2.02 2.77e+00 
    30 6.40e-04 --- 9.59e-04 --- 1.08e-02 
    60 8.00e-05 3.00 1.23e-04 2.96 4.21e-02 
    120 9.92e-06 3.01 1.55e-05 2.99 1.69e-01 
    240 1.24e-06 3.00 1.94e-06 3.00 6.97e-01 
    480 1.55e-07 3.00 2.43e-07 3.00 2.68e+00 

 
  

3 
 

    960 1.93e-08 3.01 3.04e-08 3.00 1.07e+01 
    20 2.09e-03 --- 3.15e-03 --- 1.82e-02 
    40 1.30e-04 4.01 2.01e-04 3.97 7.16e-02 
     80 8.10e-06 4.00 1.27e-05 3.98 2.76e-01 
     160 5.06e-07 4.00 7.95e-07 4.00 1.09e+00 
    320 3.16e-08 4.00 4.97e-08 4.00 4.38e+00 

 
            

4 
 

    640 1.98e-09 4.00 3.12e-09 3.99 1.82e+01 
 

 
Table 4. Errors and CPU time on the 1D linear wave equation at t = 1 using the SV method 

 
Order of 
accuracy 

   
NDOF 

L1 error L1 order    L∞ error  L∞ order      CPU 

     20 1.03e-01 --- 1.306e-01 --- 6.53e-04 
     40 2.74e-02 1.91 3.69e-02 1.82 1.66e-03 
     80 7.02e-03 1.96 9.72e-03 1.92 4.71e-03 
    160 1.77e-03 1.99 2.49e-03 1.96 1.48e-02 
    320 4.46e-04 1.99 6.28e-04 1.99 5.48e-02 

 
            

2 
     

    640 1.12e-04 1.99 1.58e-04 1.99 1.95e-01 
    30 3.96e-03 --- 5.36e-03 --- 1.53e-03 
    60 5.05e-04 2.97 6.49e-04 3.05 4.22e-03 
    120 6.34e-05 2.99 7.86e-05 3.05 1.25e-02 
    240 7.95e-06 3.00 9.61e-06 3.03 4.29e-02 
    480 9.95e-07 3.00 1.19e-06 3.01 1.59e-01 

 
             

3 
 

    960 1.24e-07 3.00 1.48e-07 3.01 5.99e-01 
    20 2.13e-03 --- 2.95e-03 --- 2.78e-03 
    40 1.37e-04 3.96 1.83e-04 4.01 7.06e-03 
     80 8.85e-06 3.95 1.11e-05 4.04 2.01e-02 
     160 5.58e-07 3.99 6.78e-07 4.03 7.11e-02 
    320 3.51e-08 3.99 4.18e-08 4.02 2.37e-01 

 
             

4 
 

    640 2.20e-09 4.00 2.59e-09 4.01 8.77e-01 
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Table 5. Errors and CPU time on the 1D Burger’s equation at t = 0.3 using the DG method 
 

Order of 
accuracy 

NDOF L1 error L1 order L∞ error L∞ order CPU 

20 1.08e-02 --- 2.10e-02 --- 3.23e-03 
40 3.05e-03 1.82 8.36e-03 1.33 1.20e-02 
80 8.08e-04 1.92 2.34e-03 1.84 4.59e-02 

160 2.07e-04 1.96 6.12e-04 1.93 1.83e-01 
320 5.22e-05 1.99 1.57e-04 1.96 7.20e-01 

 
 

2 
 

640 1.31e-05 1.99 3.96e-05 1.99 2.92e+00 
30 1.75e-03 --- 7.99e-03 --- 1.17e-02 
60 2.01e-04 3.12 9.72e-04 3.04 4.53e-02 

120 2.44e-05 3.04 1.77e-04 2.46 1.82e-01 
240 3.09e-06 2.98 2.43e-05 2.86 7.08e-01 
480 3.90e-07 2.99 3.12e-06 2.96 2.85e+00 

 
 

3 
 

960 4.86e-08 3.00 3.91e-07 3.00 1.14e+01 
20 3.17e-03 --- 7.22e-03 --- 1.00e-02 
40 9.79e-04 1.70 3.38e-03 1.09 3.80e-02 
80 5.90e-05 4.05 5.15e-04 2.71 1.49e-01 

160 4.74e-06 3.64 4.76e-05 3.44 5.89e-01 
320 3.36e-07 3.82 3.39e-06 3.81 2.40e+00 

 
 

4 
 

640 2.17e-08 3.95 2.24e-07 3.92 9.44e+00 
 
 

Table 6. Errors and CPU time on the 1D Burger’s equation at t = 0.3 using the SV method 
 

Order of 
accuracy 

   NDOF L1 error L1 order    L∞ error  L∞ order      CPU 

20 1.16e-02 --- 2.74e-02 --- 7.98e-04 
40 3.07e-03 1.92 9.97e-03 1.46 2.07e-03 
80 7.82e-04 1.97 3.09e-03 1.69 5.84e-03 

160 1.95e-04 2.00 8.11e-04 1.93 1.86e-02 
320 4.89e-05 2.00 2.08e-04 1.96 6.73e-02 

 
             

2 
     

640 1.22e-05 2.00 5.24e-05 1.99 2.50e-01 
30 1.44e-03 --- 1.17e-02 --- 1.78e-03 
60 1.92e-04 2.91 2.12e-03 2.46 5.18e-03 

120 2.71e-05 2.82 3.90e-04 2.44 1.60e-02 
240 3.67e-06 2.88 5.76e-05 2.76 5.70e-02 
480 4.81e-07 2.93 7.72e-06 2.90 4.10e-01 

 
             

3 
 

960 6.17e-08 2.96 9.89e-07 2.96 1.55e+00 
20 2.90e-03 --- 1.64e-02 --- 1.67e-03 
40 1.09e-04 4.73 7.80e-04 4.39 4.28e-03 
80 1.25e-05 3.12 2.59e-04 1.59 2.52e-02 

160 7.17e-07 4.12 1.67e-05 3.96 8.35e-02 
320 4.36e-08 4.04 1.10e-06 3.92 3.06e-01 

 
             

4 
 

640 2.71e-09 4.01 6.95e-08 3.98 2.27e+00 
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Table 7. Errors and CPU time on the 2D linear equation at t = 1 using the DG method (regular mesh) 
 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10x2 1.14e-02 --- 2.43e-02 --- 3.33e-01 
20x20x2 2.31e-03 2.30 5.83e-03 2.06 2.76e+00 
40x40x2 5.09e-04 2.19 1.42e-03 2.04 2.23e+01 
80x80x2 1.18e-04 2.11 3.49e-04 2.02 1.81e+02 

 
 

2 
 

160x160x2 2.84e-05 2.06 8.65e-05 2.01 1.45e+03 
10x10x2 3.45e-04 --- 7.65e-04 --- 7.590e-01 
20x20x2 4.27e-05 3.02 9.66e-05 2.99 6.37e+00 
40x40x2 5.32e-06 3.00 1.21e-05 3.00 5.09e+01 
80x80x2 6.65e-07 3.00 1.51e-06 3.00 4.27e+02 

 
 

3 

160x160x2 8.31e-08 3.00 1.89e-07 3.00 3.37e+03 
10x10x2 1.39e-05 --- 2.43e-05 --- 1.66e+00 
20x20x2 8.59e-07 4.02 1.52e-06 4.00 1.33e+01 
40x40x2 5.34e-08 4.01 9.54e-08 4.00 1.08e+02 
80x80x2 3.33e-09 4.00 5.97e-09 4.00 8.47e+02 

 
 

4 

160x160x2 2.08e-10 4.00 3.73e-10 4.00 7.28e+03 
 
 

Table 8. SV Errors and CPU time on the 2D linear equation at t = 1 using the SV method (regular mesh) 
 

Order of 
accuracy 

Grid L1 error L1 order L∞ error L∞ order CPU 

10x10x2 4.02e-02 --- 5.86e-02 --- 1.21e-01 
20x20x2 1.06e-02 1.92 1.59e-02 1.88 9.47e-01 
40x40x2 2.71e-03 1.97 4.09e-03 1.96 8.81e+00 
80x80x2 6.83e-04 1.99 1.03e-03 1.99 8.39e+01 

 
 

2 
 

160x160x2 1.71e-04 2.00 2.59e-04 1.99 6.05e+02 
10x10x2 3.73e-03 --- 5.21e-03 --- 4.68e-01 
20x20x2 4.77e-04 2.97 7.12e-04 2.87 4.19e+00 
40x40x2 6.04e-05 2.98 9.05e-05 2.98 3.67e+01 
80x80x2 7.59e-06 2.99 1.14e-05 2.98 2.91e+02 

 
 

3 

160x160x2 9.51e-07 3.00 1.43e-06 2.99 2.21e+03 
10x10x2 9.04e-05 --- 1.25e-04 --- 1.33e+00 
20x20x2 5.66e-06 4.00 8.00e-06 3.97 1.25e+01 
40x40x2 3.56e-07 3.99 5.02e-07 4.00 8.46e+01 
80x80x2 2.23e-08 4.00 3.14e-08 4.00 6.77e+02 

 
 

4 

160x160x2 1.39e-09 4.00 1.98e-09 3.99 6.36e+03 
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Table 9. Errors and CPU time on the 2D linear equation at t = 1 using the DG method (irregular mesh) 
Order Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 2.17e-02 --- 6.05e-02 --- 3.77e-01 
20x20 4.67e-03 2.22 1.64e-02 1.88 3.26e+00 
40x40 1.07e-03 2.12 4.17e-03 1.97 2.65e+01 
80x80 2.56e-04 2.06 1.05e-03 1.99 2.13e+02 

 
 

2 
 

160x160 6.26e-05 2.03 2.62e-04 2.00 1.75e+03 
10x10 7.34e-04 --- 2.56e-03 --- 9.12e-01 
20x20 8.72e-05 3.07 4.42e-04 2.53 7.50e+00 
40x40 1.07e-05 3.03 6.34e-05 2.80 6.00e+01 
80x80 1.33e-06 3.01 8.19e-06 2.95 4.80e+02 

 
 

3 

160x160 1.66e-07 3.00 1.03e-06 2.99 4.29e+03 
10x10 4.10e-05 --- 1.80e-04 --- 3.87e+00 
20x20 2.41e-06 4.09 1.30e-05 3.79 3.12e+01 
40x40 1.47e-07 4.04 8.54e-07 3.92 2.48e+02 
80x80 9.08e-09 4.01 5.72e-08 3.90 2.10e+03 

 
 

4 

160x160 5.65e-10 4.01 3.72e-09 3.94 1.70e+04 
 

Table 10. Errors and CPU time on the 2D linear equation at t = 1 using the SV method (irregular mesh) 
Order Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 6.71e-02 --- 1.18e-01 --- 1.38e-01 
20x20 1.83e-02 1.87 3.40e-02 1.80 1.30e+00 
40x40 4.71e-03 1.96 9.25e-03 1.88 1.17e+01 
80x80 1.19e-03 1.98 2.42e-03 1.94 8.61e+01 

 
 

2 
 

160x160 3.00e-04 1.99 6.20e-04 1.96 8.38e+02 
10x10 8.36e-03 --- 1.68e-02 --- 5.59e-01 
20x20 1.15e-03 2.87 2.95e-03 2.51 4.79e+00 
40x40 1.52e-04 2.92 5.28e-04 2.48 3.88e+01 
80x80 2.01e-05 2.91 1.31e-04 2.01 3.27e+02 

 
 

3 

160x160 2.64e-06 2.93 2.85e-05 2.20 2.71e+03 
10x10 2.06e-04 --- 4.46e-04 --- 3.08e+00 
20x20 1.33e-05 3.95 3.63e-05 3.62 2.44e+01 
40x40 8.58e-07 3.96 2.85e-06 3.67 1.96e+02 
80x80 5.40e-08 3.99 1.78e-07 4.00 1.65e+03 

 
 

4 
 
 160x160 3.42e-09 3.98 2.66e-08 2.74 1.30e+04 

 
Table 11.  Errors and CPU time on the 2D nonlinear equation at t = 0.1 using DG (irregular mesh)  

Order  Grid L1 error L1 order L∞ error L∞ order CPU 
10x10 1.06e-02 --- 3.48e-02 --- 3.74e-02 
20x20 2.75e-03 1.95 1.14e-02 1.61 3.22e-01 
40x40 6.82e-04 2.01 3.21e-03 1.83 2.65e+00 
80x80 1.70e-04 2.00 8.24e-04 1.96 2.18e+01 

 
 

2 
 

160x160 4.24e-05 2.00 2.08e-04 1.98 1.74e+02 
10x10 6.80e-04 --- 3.17e-03 --- 1.80e-01 
20x20 1.14e-04 2.57 8.32e-04 1.93 1.54e+00 
40x40 1.79e-05 2.68 1.62e-04 2.36 1.29e+01 
80x80 2.73e-06 2.71 3.45e-05 2.23 9.76e+01 

 
 

3 

160x160 4.08e-07 2.74 5.89e-06 2.55 7.76e+02 
10x10 6.01e-05 --- 4.58e-04 --- 2.91e-01 
20x20 3.68e-06 4.03 3.76e-05 3.61 2.34e+00 
40x40 2.34e-07 3.98 2.47e-06 3.93 1.93e+01 
80x80 1.61e-08 3.86 2.07e-07 3.58 1.53e+02 

 
 

4 
 

160x160 1.20e-09 3.75 1.95e-08 3.41 1.21e+03 
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Table 12. Errors and CPU time on the 2D nonlinear equation at t = 0.1 using SV (irregular mesh)  
Order Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 5.79e-03 --- 1.76e-02 --- 1.34e-02 
20x20 1.46e-03 1.99 4.91e-03 1.84 1.29e-01 
40x40 3.67e-04 1.99 1.41e-03 1.80 1.17e+00 
80x80 9.41e-05 1.96 5.60e-04 1.34 8.62e+00 

 
 

2 
 

160x160 2.39e-05 1.97 2.68e-04 1.06 6.92e+01 
10x10 6.28e-04 --- 2.15e-03 --- 1.08e-01 
20x20 1.18e-04 2.42 6.20e-04 1.80 9.80e-01 
40x40 1.91e-05 2.62 1.38e-04 2.17 7.99e+00 
80x80 3.02e-06 2.66 3.28e-05 2.07 6.83e+01 

 
 

3 

160x160 4.64e-07 2.70 6.09e-06 2.43 5.09e+02 
10x10 6.73e-05 --- 4.43e-04 --- 2.28e-01 
20x20 5.19e-06 3.70 5.61e-05 2.98 1.89e+00 
40x40 3.93e-07 3.72 4.46e-06 3.65 1.50e+01 
80x80 2.95e-08 3.74 3.10e-07 3.85 1.21e+02 

 
 

4 
 
 160x160 2.38e-09 3.63 3.13e-08 3.31 1.13e+03 

 
Table 13. Errors and CPU time on the 2D nonlinear equation at t = 0.45 using DG (irregular mesh)  
Order  Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 1.78e-03 --- 6.11e-03 --- 4.22e-01 
20x20 1.75e-04 3.35 5.90e-04 3.37 3.37e+00 
40x40 3.29e-05 2.41 1.97e-04 1.58 2.73e+01 
80x80 6.84e-06 2.27 5.06e-05 1.96 2.26e+02 

 
2 

(TVBM=800) 
 

160x160 1.53e-06 2.16 9.94e-06 2.35 1.82e+03 
10x10 9.49e-04 --- 4.85e-03 --- 9.20e-01 
20x20 7.68e-05 3.63 4.62e-04 3.39 7.41e+00 
40x40 7.73e-06 3.31 5.11e-05 3.18 6.04e+01 
80x80 8.26e-07 3.23 9.77e-06 2.39 5.06e+02 

 
3 

(TVBM=800) 
 

160x160 9.58e-08 3.11 2.12e-06 2.20 4.11e+03 
10x10 7.18e-04 --- 4.87e-03 --- 1.91e+00 
20x20 8.80e-06 6.35 1.14e-04 5.42 1.55e+01 
40x40 2.63e-07 5.06 2.22e-05 2.36 1.26e+02 
80x80 1.50e-08 4.13 2.60e-08 9.73 1.20e+03 

 
4 

(TVBM=1200) 

160x160 3.63e-09 2.05 5.93e-09 2.14 9.88e+03 
 

Table 14. Errors and CPU time on the 2D nonlinear equation at t = 0.45 using SV (irregular mesh)  
Order  Grid L1 error L1 order L∞ error L∞ order CPU 

10x10 1.99e-03 --- 3.80e-03 --- 2.05e-01 
20x20 4.84e-04 2.04 1.53e-03 1.31 1.67e+00 
40x40 1.14e-04 2.09 3.92e-04 1.97 1.81e+01 
80x80 2.87e-05 1.99 1.29e-04 1.60 1.57e+02 

 
2 

(TVBM=800) 
 

160x160 7.11e-06 2.01 3.31e-05 1.97 1.21e+03 
10x10 1.05e-03 --- 6.00e-03 --- 6.73e-01 
20x20 8.03e-05 3.71 6.20e-04 3.27 5.85e+00 
40x40 7.30e-06 3.46 3.89e-05 3.99 5.82e+01 
80x80 8.68e-07 3.07 7.30e-06 2.41 4.53e+02 

 
3 

(TVBM=800) 
 

160x160 1.11e-07 2.97 1.46e-06 2.32 3.61e+03 
10x10 4.39e-04 --- 3.25e-03 --- 1.61e+00 
20x20 4.63e-06 6.57 7.14e-05 5.51 1.43e+01 
40x40 9.87e-08 5.55 1.39e-06 5.69 1.23e+02 
80x80 1.55e-08 2.67 3.56e-08 5.28 1.02e+03 

 
4 

(TVBM=1200) 

160x160 3.65e-09 2.09 7.14e-09 2.32 8.70e+03 
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