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An implicit non-linear lower-upper symmetric Gauss-Seidel (LU-SGS) solution 
algorithm has been developed for a high-order spectral difference Navier-Stokes solver on 
unstructured hexahedral grids. The non-linear LU-SGS solver is preconditioned by the 
block element matrix, and the system of equations is then solved with a LU decomposition 
approach. The large sparse Jacobian matrix is computed numerically, resulting in extremely 
simple operations for arbitrarily complex residual operators. Several viscous test cases were 
performed to evaluate the performance. The implicit solver has shown speedup of 1 to 2 
orders of magnitude over the multi-stage Runge-Kutta time integration scheme. 

 I. Introduction 
omputational fluid dynamics (CFD) has undergone tremendous development as a discipline for three decades, 
and is used routinely to complement the wind tunnel in the design of aircraft. This has been made possible by 

progresses in many fronts, including numerical algorithms for the Navier-Stokes equations, grid generation and 
adaptation, turbulence modeling, flow visualization, as well as the dramatic increase in computer CPU and network 
speeds. Nearly all production flow solvers are based on second-order numerical methods. They are capable of 
delivering design-quality Reynolds Averaged Navier-Stokes (RANS) results with several million cells (degrees of 
freedom or DOFs) on commercial Beowulf clusters within a few hours.  

C 

 As impressive as these second order codes are, there are still many flow problems considered out of reach, e.g., 
vortex dominated flows including helicopter blade vortex interaction, and flow over high-lift configurations. 
Unsteady propagating vortices are the main features of these flow problems, and second-order methods are too 
dissipative to resolve those unsteady vortices. The advantage of high-order methods (order of accuracy > 2) over 
first and second-order ones is well known in the CFD community. Generally speaking, with the same number of 
degrees-of-freedom (DOFs) or solution unknowns, high-order methods are capable of producing much more 
accurate results. For problems requiring very high accuracy, e.g., wave propagation problems in computational 
aeroacoustics, high-order methods have been the main choice. Many high-order methods were developed for 
structured grids, e.g., ENO/WENO methods1, compact methods2-3, optimized methods4, to name just a few. In the 
last two decades, there have been intensive research efforts on high-order methods for unstructured grids since many 
real world applications have complex geometries. An incomplete list of notable examples includes the spectral 
element method5, multi-domain spectral method6-7, k-exact finite volume method8, WENO methods9, discontinuous 
Galerkin (DG) method10-12, high-order residual distribution methods13, spectral volume (SV) 14-17 and spectral 
difference (SD) methods18-21.  Among those methods, some are based on the weighted residual form of the 
governing equations, for instance the DG method10-12. Some are based on the integral form of the governing 
equations, e. g., the k-exact finite volume method8 and SV methods14-17. Others, such as the staggered grid multi-
domain spectral method6-7 and the SD method18-21, are based on the differential form. 
 When one chooses a particular method for three-dimensional applications, the cost and the complexity in 
implementing the method is often an important factor. It is obvious that methods based on the differential form are 
the easiest to implement since they do not involve surface or volume integrals. This is particularly true when high-
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order curved boundaries need to be dealt with. We recently developed a high order SD method22 for the three 
dimensional Navier-Stokes equations on unstructured hexahedral grids. High order accuracy and spectral 
convergence are achieved for several benchmark problems. It was also shown that the wall boundaries must be 
approximated with high-order surfaces. An explicit Runge-Kutta time integration scheme was used in the 
implementation. Although the explicit scheme is easy to implement and has high-order accuracy in time, it suffered 
from slow convergence, especially for viscous grids which are clustered in the viscous boundary layer. It is well-
known that high-order methods are restricted to a smaller CFL number than low order ones. In addition, they also 
possess much less numerical dissipation. Therefore it takes excessive CPU to reach a state-steady solution with 
explicit high-order schemes. The computation cost of high-order explicit methods for many steady-state problems is 
so high that they become less efficient than low-order implicit methods in terms of the total CPU time given the 
same level of solution error. It is therefore imperative to develop efficient implicit solution approaches for high-
order methods to fully realize the potentials, which is the objective of the present study.  
 Recently, a non-linear LU-SGS approach was successfully developed for an inviscid SD solver23, and shown 
very promising convergence speedups of 1 to 2 orders. In this paper, we extend the approach to solve viscous flow 
problems governed by the Navier-Stokes equations. Many implicit schemes for unstructured grids were shown to be 
very effective for converging steady state flow problems24-29. The main difficulty in the extension is the computation 
of the element Jacobian matrices, which involve neighbor’s neighbors. A numerical approach to compute the 
Jacobian is employed to avoid the difficulties.  
 The paper is organized as follows. In the next section, the formulation of the 3D spectral difference method 
including both explicit and implicit schemes is described for a hexahedral element. In Section 3, several 
representative test cases are selected to demonstrate the efficiency of the implicit approach. Conclusions and 
possible future works are summarized in Section 4. 
 

II. Formulation of Multidomain Spectral Difference Method 
Governing equation 
 Consider the unsteady compressible 3D Navier-Stokes equations in conservative form written as 
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where Q is the vector of conserved variables, and F, G, H  are the total fluxes including both the inviscid and 
viscous flux vectors, i.e., vi FFF −= , , vi GGG −= vi HHH −= . 
 We employ non-overlapping unstructured hexahedral cells or elements to fill the computational domain. The 
use of hexahedral cells for viscous boundary layers is preferred over tetrahedral cells because of the efficiency and 
accuracy. In order to handle curved boundaries, both linear and quadratic isoparametric elements are employed, with 
linear elements used in the interior domain and quadratic elements near high-order curved boundaries. In order to 
achieve an efficient implementation, all elements are transformed from the physical domain  into a standard 
cubic element 

),,( zyx
∈),,( ςηξ [0,1]x[0,1]x[0,1] as shown in Figure 1. The transformation can be written as 

 , (2) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
=

i

i

iK

i
i

z
y
x

M
z
y
x

1
),,( ςηξ

where K is the number of points used to define the 
physical element,  are the Cartesian 
coordinates of those points, and  are the shape 
functions. For the transformation given in (2), the 
Jacobian matrix  takes the following form 
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For a non-singular transformation, its inverse 
transformation must also exist, and the Jocobian matrices 
are related to each other according to 

Figure 1. Transformation from a physical element to 
a standard element 
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The governing equations in the physical domain are then transformed into the computational domain (standard 
element), and the transformed equations take the following form 
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Space Discretization  
In the standard element, two sets of points are defined, namely the solution points and the flux points, illustrated in 
Figure 2 for a 2D element. The solution unknowns or degrees-of-freedom (DOFs) are the conserved variables at the 
solution points, while fluxes are computed at the flux points. In order to construct a degree (N-1) polynomial in each 
coordinate direction, solutions at N points are required. The solution points in 1D are chosen to be the Gauss points 
defined by 
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The flux points are selected to be the Gauss-Lobatto points given by  
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 Using the N solutions at the solution points, a 
degree N-1 polynomial can be built using the following 
Lagrange basis defined as  
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Similarly, using the N+1 fluxes at the flux points, a 
degree N polynomial can be built for the flux using a 
similar Lagrange basis defined as  
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Figure 2. Distribution of solution points (circles) and 
flux points (squares) in a standard element for a 3rd 
order SD scheme.

The reconstructed solution for the conserved variables in 
the standard element is just the tensor products of the 
three one-dimensional polynomials, i.e.,  
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Similarly, the reconstructed flux polynomials take the following form: 
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The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the inviscid 
flux, a Riemann solver, such as the Rusanov or Roe flux, is employed to compute a common flux at interfaces to 
ensure conservation and stability. In summary, the algorithm to compute the inviscid flux derivatives consists of the 
following steps: 
 Given the conserved variables at the solution points { }kjiQ ,,

~ , compute the conserved variables at the flux points 

 using (7) (Note that ); },,{ 2/1,,,2/1,,,2/1 +++ kjikjikji QQQ mnnm Xh δ=)(
 Compute the inviscid fluxes at the interior flux points using the solutions computed at Step 1, i.e., 

{ }1,,1,~
,,2/1 −=+ NiF i
kji L , { }1,,1,~

,2/1, −=+ NjGi
kji L , { }1,,1,~

2/1,, −=+ NkH i
kji L ; 

 Compute the inviscid flux at element interfaces using a Riemann solver, such as the Rusanov solver, in terms of 
the left and right conserved variables of the interface. Given the normal direction of the interface nr , and the 
averaged normal velocity component nV  and sound speed c , the Rusanov flux on the interface is computed 
with 
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 Compute the derivatives of the fluxes at all the solution points according to 
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The viscous flux is a function of both the conserved variables and their gradients, i.e., 
),(~~
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. Therefore the key is how to compute the solution gradients at the flux points. 

The gradient of the conserved variables in the physical domain can be easily computed using 
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In deriving (10), we have used the following identity 
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The derivatives along each coordinate direction are computed using   
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The following steps are taken to compute the viscous fluxes: 
 Same as Step 1 for the inviscid flux computations; 
 When computing the derivatives using (11), the solution Q at the cell interface is not uniquely defined. The 

solution at the interface is simply the average of the left and right solutions, 
2/)(ˆ

RL QQQ += . 
 Compute the gradients of the solution at the solution points using the solutions at the flux points with (10) 

and (11). Then the gradients are interpolated from the solution points to the flux points using the same 
Lagrangian interpolation approach given in (7).  

 Compute the viscous flux at the flux points using the solutions and their gradients at the flux points. Again 
at cell interfaces, the gradients have two values, one from the left and one from the right. The gradients 
used in the viscous fluxes at the cell interface are simply the averaged ones, i.e., 
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Time Marching  
Explicit scheme: Denote the residual at cell c )~( n

c QR . Obviously , the semi-discrete equation can be written as 
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A multi-stage TVD Runge-Kutta scheme is used as the explicit scheme. 
 
Implicit scheme: At each cell c, using the backward Euler difference, (1) can be written as 
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where nb indicates all the neighboring cells contributing to the residual of cell c. Therefore, the fully linearized 
equations for (3) can be written as 
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However, it costs too much memory to store the LHS implicit Jacobian matrices. Therefore, we employ a LU-SGS 
scheme to solve (15), i.e., we use the most recent solution for the nb cells,  
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The matrix 
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is the element (or cell) matrix, which is not too large for 2nd to 4th order SD schemes. (16) is then solved with a 

direct LU decomposition solver. Since we do not want to store the matrices 
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Combining (16) and (18) together, we obtain 
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Eq. (19) is then solved with symmetric forward and backward sweeps. Note that once (19) is solved to machine 
zero, the unsteady residual is zero at each time step. For steady state problems, the last term in (19) can be dropped 
sometimes resulting in faster convergence rate. 
 
Computation of the Jacobian Matrix  
 Because of the way in which the viscous fluxes are computed, the present SD method uses cells which are 

neighbors’ neighbors. If the analytical approach is used to compute the element Jacobian matrix 
c
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Q
R
~

∂
∂ , the 

formulation would be very complex. In stead, the following numerical approach is used based on the definition 
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where ε  is a small parameter, e.g., 810−×≈ cQε . Although this approach is very easy to implement for arbitrarily 
complex residual operators, it is quite expensive because each variable has to be changed. In practice, we have found 
it is not necessary to compute the matrix at each iteration. Therefore, we often re-compute the matrix every 40-100 
iterations. Numerical tests showed that this matrix-freezing approach did not significantly degrade the convergence 
rate to the steady state.  
 

III. Numerical Experiments  
Couette Flow 
The Couette flow is a steady analytical solution of the Navier-Stokes equations, and was selected to demonstrate the 
performance with the implicit LU-SGS method. This problem models the viscous flow between a stationary, fixed 
temperature ( ) front plate, and a moving, fixed temperature ( ) rear plate at speed of U. The distance between 
the two plates is H. It has an exact solution under the simplification that the viscosity coefficient 

0T 1T
μ  is a constant. 

The steady analytic solution is  
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where k is the thermal conductivity, and R is the gas constant. 
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In our simulations, we chose . The computational domain is  
[0,4]x[0,2]x[0,4]. We conducted an efficiency study of implicit LU-SGS method using 2

01.0,85.0,8.0,0.2,0.1 10 ===== μTTHU
nd to 4th order schemes on a 

coarse grid with 16 (4x4x1) elements. The residual histories in terms of CPU time for 2nd to 4th order SD schemes 
are compared with the explicit schemes in Figure 3. The implicit schemes showed over an order of magnitude 
speedup. The residual histories in terms of iteration numbers and CPU times using the implicit schemes are plotted 
in Figure 4. It is interesting to note that the convergence is nearly independent of the order of accuracy. Obviously, it 
takes much more CPU time to converge the higher order schemes. 

 
Steady viscous flow around a sphere 
A steady viscous flow around a sphere is used here to demonstrate the performance with the implicit LU-SGS 
method. The mesh used is shown in Figure 5. The Reynolds number based on the diameter was chosen to be 118 
since an experimental streamline picture is available for comparison. This viscous flow computation was performed 
using the 2nd to 4th order schemes. The computational streamlines agree well with experimental streamlines. The 
explicit and implicit schemes are compared in Figure 6, which shows the convergence histories in terms of CPU 
times. For all the tested schemes, the speedup with the LU-SGS algorithm is more than an order of magnitude and 
up to 2 orders, fully demonstrating the effectiveness of the implicit algorithm. The implicit SD schemes of various 
orders of accuracy are also compared in Figure 7. Note that the convergence in terms of iterations is nearly order 
independent. It is also obviously the CPU times for higher order schemes increase non-linearly with respect to the 
order of accuracy.   
 
Laminar flow over NACA0012 airfoil 
 In this test, we consider a subsonic viscous flow problem over the NACA0012 airfoil at an angle of attack 

, free stream Mach number , and Reynolds number 00=α 5.0=M 5000Re = . This is a widely used validation case 
for viscous flow solvers. The computational grid is displayed in Figure 8 with size . The larger number refers to the 
number of cells distributed along the airfoil surface and the smaller one the number of cells in the radial and span-
wise direction. The grid extents about 20 chords away form the airfoil. The computations were performed using 2nd 
to 4th order SD schemes. The wall is assumed to be non-slip and adiabatic, and is represented by a quadratic patch. 
The Reynolds number is near the upper limit for a steady laminar flow. A distinguishing feature of this test case is 
the separation region of the flow occurring near the trailing edge, which causes the formation of a small recirculation 
bubble that extends in the near-wake region of the airfoil. 
 Figure 9 shows the Mach contours computed with SD schemes of 3rd and 4th order of accuracy. It is obvious that 
the solution is getting smoother and smoother with the increasing of the order of polynomial reconstruction, 
indicating the solution is more accurate. The convergence history of explicit and implicit 3rd SD schemes is plotted 
in Figure 10. The speedup factor in this case is estimated to be more than 2 orders. The residual histories of various 
implicit schemes are plotted in Figure 11. Note that in this case, the convergence rate in terms of iterations is 
strongly dependent on the order of accuracy.  It is speculated that this is due to the high aspect ratio cells used in the 
computational grid. 

 
IV. Conclusions  

In this paper, an efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solution algorithm has been 
extended to viscous flow simulations using a high order multi-domain spectral difference method on unstructured 
hexahedral grids. A numerical approach is developed to compute the element Jacobian matrix, resulting in 
straightforward operations for arbitrarily complex residual operators. The implicit scheme has shown 1 to 2 orders of 
magnitude of speed-up relative to the multi-stage Runge-Kutta explicit time integration scheme for several 
demonstration problems..  
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(a) 2nd order 
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(b) 3rd order 
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(c) 4th order 

Figure 3. Residual history in term of CPU Time for Couette flow 
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Figure 4. Convergence histories for various SD schemes on the same mesh 

 

 
 

Figure 5. Sphere grids with quadratic boundary (768 elements) 
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(a) 2nd order 
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(b) 3rd order 
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(c) 4th order 

Figure 6. Residual histories in term of CPU times for viscous flow over a sphere 
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Figure 7. Convergence histories in terms of CPU times for various SD schemes 
 

 
 

Figure 8. Computational grid around a NACA0012 airfoil 
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(a) 3rd Order                                                     (b) 4th Order 

Figure 9. Computed Mach number contours using 3rd and 4th order SD schemes.  
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Figure 10. Convergence histories for 3rd order SD scheme 
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Figure 11. Convergence histories in terms of CPU times for laminar flow over the NACA0012 Airfoil 
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