
Efficient Implicit Non-linear LU-SGS Approach for Viscous Flow
Computation Using High-Order Spectral Difference Method

Yuzhi Sun1 and Z.J. Wang2

Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

Yen Liu3

NASA Ames Research Center, Moffett Field, CA 94035

An implicit non-linear lower-upper symmetric Gauss-Seidel (LU-SGS) solution
algorithm has been developed for a high-order spectral difference Navier-Stokes solver on
unstructured hexahedral grids. The non-linear LU-SGS solver is preconditioned by the
block element matrix, and the system of equations is then solved with a LU decomposition
approach. The large sparse Jacobian matrix is computed numerically, resulting in extremely
simple operations for arbitrarily complex residual operators. Several viscous test cases were
performed to evaluate the performance. The implicit solver has shown speedup of 1 to 2
orders of magnitude over the multi-stage Runge-Kutta time integration scheme.

 I. Introduction
omputational fluid dynamics (CFD) has undergone tremendous development as a discipline for three decades,
and is used routinely to complement the wind tunnel in the design of aircraft. This has been made possible by

progresses in many fronts, including numerical algorithms for the Navier-Stokes equations, grid generation and
adaptation, turbulence modeling, flow visualization, as well as the dramatic increase in computer CPU and network
speeds. Nearly all production flow solvers are based on second-order numerical methods. They are capable of
delivering design-quality Reynolds Averaged Navier-Stokes (RANS) results with several million cells (degrees of
freedom or DOFs) on commercial Beowulf clusters within a few hours.

C

 As impressive as these second order codes are, there are still many flow problems considered out of reach, e.g.,
vortex dominated flows including helicopter blade vortex interaction, and flow over high-lift configurations.
Unsteady propagating vortices are the main features of these flow problems, and second-order methods are too
dissipative to resolve those unsteady vortices. The advantage of high-order methods (order of accuracy > 2) over
first and second-order ones is well known in the CFD community. Generally speaking, with the same number of
degrees-of-freedom (DOFs) or solution unknowns, high-order methods are capable of producing much more
accurate results. For problems requiring very high accuracy, e.g., wave propagation problems in computational
aeroacoustics, high-order methods have been the main choice. Many high-order methods were developed for
structured grids, e.g., ENO/WENO methods1, compact methods2-3, optimized methods4, to name just a few. In the
last two decades, there have been intensive research efforts on high-order methods for unstructured grids since many
real world applications have complex geometries. An incomplete list of notable examples includes the spectral
element method5, multi-domain spectral method6-7, k-exact finite volume method8, WENO methods9, discontinuous
Galerkin (DG) method10-12, high-order residual distribution methods13, spectral volume (SV) 14-17 and spectral
difference (SD) methods18-21. Among those methods, some are based on the weighted residual form of the
governing equations, for instance the DG method10-12. Some are based on the integral form of the governing
equations, e. g., the k-exact finite volume method8 and SV methods14-17. Others, such as the staggered grid multi-
domain spectral method6-7 and the SD method18-21, are based on the differential form.
 When one chooses a particular method for three-dimensional applications, the cost and the complexity in
implementing the method is often an important factor. It is obvious that methods based on the differential form are
the easiest to implement since they do not involve surface or volume integrals. This is particularly true when high-

1 Postdoc Research Associate of Aerospace Engineering, 2271 Howe Hall, sunyuzhi@iastate.edu, AIAA Member.
2 Associate Professor of Aerospace Engineering, 2271 Howe Hall, zjw@iastate.edu, Associate Fellow of AIAA
3 Research Scientist, Yen.Liu@nasa.gov, Mail Stop T27B-1.

 1
American Institute of Aeronautics and Astronautics

18th AIAA Computational Fluid Dynamics Conference
25 - 28 June 2007, Miami, FL

AIAA 2007-4322

Copyright © 2007 by Y. Sun, Z.J. Wang and Y. Liu. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

mailto:sunyuzhi@iastate.edu
mailto:zjw@iastate.edu
mailto:Yen.Liu@nasa.gov

order curved boundaries need to be dealt with. We recently developed a high order SD method22 for the three
dimensional Navier-Stokes equations on unstructured hexahedral grids. High order accuracy and spectral
convergence are achieved for several benchmark problems. It was also shown that the wall boundaries must be
approximated with high-order surfaces. An explicit Runge-Kutta time integration scheme was used in the
implementation. Although the explicit scheme is easy to implement and has high-order accuracy in time, it suffered
from slow convergence, especially for viscous grids which are clustered in the viscous boundary layer. It is well-
known that high-order methods are restricted to a smaller CFL number than low order ones. In addition, they also
possess much less numerical dissipation. Therefore it takes excessive CPU to reach a state-steady solution with
explicit high-order schemes. The computation cost of high-order explicit methods for many steady-state problems is
so high that they become less efficient than low-order implicit methods in terms of the total CPU time given the
same level of solution error. It is therefore imperative to develop efficient implicit solution approaches for high-
order methods to fully realize the potentials, which is the objective of the present study.
 Recently, a non-linear LU-SGS approach was successfully developed for an inviscid SD solver23, and shown
very promising convergence speedups of 1 to 2 orders. In this paper, we extend the approach to solve viscous flow
problems governed by the Navier-Stokes equations. Many implicit schemes for unstructured grids were shown to be
very effective for converging steady state flow problems24-29. The main difficulty in the extension is the computation
of the element Jacobian matrices, which involve neighbor’s neighbors. A numerical approach to compute the
Jacobian is employed to avoid the difficulties.
 The paper is organized as follows. In the next section, the formulation of the 3D spectral difference method
including both explicit and implicit schemes is described for a hexahedral element. In Section 3, several
representative test cases are selected to demonstrate the efficiency of the implicit approach. Conclusions and
possible future works are summarized in Section 4.

II. Formulation of Multidomain Spectral Difference Method
Governing equation
 Consider the unsteady compressible 3D Navier-Stokes equations in conservative form written as

 0=
∂
∂+

∂
∂+

∂
∂+

∂
∂

z
H

y
G

x
F

t
Q , (1)

where Q is the vector of conserved variables, and F, G, H are the total fluxes including both the inviscid and
viscous flux vectors, i.e., vi FFF −= , , vi GGG −= vi HHH −= .
 We employ non-overlapping unstructured hexahedral cells or elements to fill the computational domain. The
use of hexahedral cells for viscous boundary layers is preferred over tetrahedral cells because of the efficiency and
accuracy. In order to handle curved boundaries, both linear and quadratic isoparametric elements are employed, with
linear elements used in the interior domain and quadratic elements near high-order curved boundaries. In order to
achieve an efficient implementation, all elements are transformed from the physical domain into a standard
cubic element

),,(zyx
∈),,(ςηξ [0,1]x[0,1]x[0,1] as shown in Figure 1. The transformation can be written as

 , (2)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
=

i

i

iK

i
i

z
y
x

M
z
y
x

1
),,(ςηξ

where K is the number of points used to define the
physical element, are the Cartesian
coordinates of those points, and are the shape
functions. For the transformation given in (2), the
Jacobian matrix takes the following form

),,(iii zyx
),,(ςηξiM

J

 ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
∂
∂

=

ζηξ

ζηξ

ζηξ

ζηξ
zzz
yyy
xxx

zyxJ
),,(
),,(.

For a non-singular transformation, its inverse
transformation must also exist, and the Jocobian matrices
are related to each other according to

Figure 1. Transformation from a physical element to
a standard element

 2
American Institute of Aeronautics and Astronautics

1

),,(
),,(−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
∂
∂ J

zyx
zyx

zyx

zyx

ζζζ
ηηη
ξξξ

ζηξ .

The governing equations in the physical domain are then transformed into the computational domain (standard
element), and the transformed equations take the following form

 0
~~~~
=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ςηξ
HGF

t
Q .                                         (3) 

where  

QJQ ⋅=
~  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

H
G
F

J
H
G
F

zyx

zyx

zyx

ζζζ
ηηη
ξξξ

~
~
~

.    

Let ),,(),,,(),,,( zyxzyxzyx JSJSJS ζζζηηηξξξ ζηξ ===
rrr

. Then we have ξSfF
rr

•=
~ , ηSfG

rr
•=

~ , ζSfH
rr

•=~  

with  . ),,( HGFf =
r

 
Space Discretization  
In the standard element, two sets of points are defined, namely the solution points and the flux points, illustrated in 
Figure 2 for a 2D element. The solution unknowns or degrees-of-freedom (DOFs) are the conserved variables at the 
solution points, while fluxes are computed at the flux points. In order to construct a degree (N-1) polynomial in each 
coordinate direction, solutions at N points are required. The solution points in 1D are chosen to be the Gauss points 
defined by 

Ns
N

sX s ,,2,1,
2

12cos1
2
1

K=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

−
−= π .                                                (4)                            

The flux points are selected to be the Gauss-Lobatto points given by  

.,,1,0,cos1
2
1

2/1 Ns
N
sX s K=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ⋅−=+ π       (5) 

 
 

 Using the N solutions at the solution points, a 
degree N-1 polynomial can be built using the following 
Lagrange basis defined as  

∏
≠=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
N

iss si

s
i XX

XXXh
,1

)(                       (6a) 

Similarly, using the N+1 fluxes at the flux points, a 
degree N polynomial can be built for the flux using a 
similar Lagrange basis defined as  

∏
≠= ++

+
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

N

iss si

s
i XX

XXXl
,0 2/12/1

2/1
2/1 )( .              (6b) 

Figure 2. Distribution of solution points (circles) and 
flux points (squares) in a standard element for a 3rd 
order SD scheme.

The reconstructed solution for the conserved variables in 
the standard element is just the tensor products of the 
three one-dimensional polynomials, i.e.,  

)()()(
~

),,(
1 1 1 ,,

,, ςηξςηξ kji

N

k

N

j

N

i kji

kji hhh
J
Q

Q ⋅⋅= ∑∑∑
= = =

.                                              (7) 

Similarly, the reconstructed flux polynomials take the following form: 

 3 
American Institute of Aeronautics and Astronautics 



)()()(~),,(~
2/1

1 1 0
,,2/1 ςηξςηξ kji

N

k

N

j

N

i
kji hhlFF ⋅⋅= +

= = =
+∑∑∑ ,                                        (8a) 

)()()(~),,(~
2/1

1 0 1
,2/1, ςηξςηξ kji

N

k

N

j

N

i
kji hlhGG ⋅⋅= +

= = =
+∑∑∑ ,                                            (8b) 

 .                              (8c) )()()(~),,(~
2/1

0 1 1
2/1,, ςηξςηξ +

= = =
+ ⋅⋅= ∑∑∑ kji

N

k

N

j

N

i
kji lhhHH

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the inviscid 
flux, a Riemann solver, such as the Rusanov or Roe flux, is employed to compute a common flux at interfaces to 
ensure conservation and stability. In summary, the algorithm to compute the inviscid flux derivatives consists of the 
following steps: 
 Given the conserved variables at the solution points { }kjiQ ,,

~ , compute the conserved variables at the flux points 

 using (7) (Note that ); },,{ 2/1,,,2/1,,,2/1 +++ kjikjikji QQQ mnnm Xh δ=)(
 Compute the inviscid fluxes at the interior flux points using the solutions computed at Step 1, i.e., 

{ }1,,1,~
,,2/1 −=+ NiF i
kji L , { }1,,1,~

,2/1, −=+ NjGi
kji L , { }1,,1,~

2/1,, −=+ NkH i
kji L ; 

 Compute the inviscid flux at element interfaces using a Riemann solver, such as the Rusanov solver, in terms of 
the left and right conserved variables of the interface. Given the normal direction of the interface nr , and the 
averaged normal velocity component nV  and sound speed c , the Rusanov flux on the interface is computed 
with 

( )ξξ SnsignSQQcVFFF LRn
i

R
i

L
i

rrr
•⋅⋅−⋅+−+= )()(~~(

2
1~  

( )ηη SnsignSQQcVGGG LRn
i
R

i
L

i
rrr

•⋅⋅−⋅+−+= )()(~~(
2
1~  

( )ζζ SnsignSQQcVHHH LRn
i
R

i
L

i
rrr

•⋅⋅−⋅+−+= )()(~~(
2
1~  

 Compute the derivatives of the fluxes at all the solution points according to 

 ∑
=

++ ′⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂ N

r
irkjr

kji

lFF
0

2/1,,2/1
,,

)(~~
ξ

ξ
                                         (9a) 

 ∑
=

++ ′⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂ N

r
jrkri

kji

lGG
0

2/1,2/1,

,,

)(~~
η

η
                                         (9b) 

 ∑
=

++ ′⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂ N

r
krrji

kji

lHH
0

2/12/1,,
,,

)(~~
ς

ς
.                (9c) 

The viscous flux is a function of both the conserved variables and their gradients, i.e., 
),(~~

,,2/1,,2/1,,2/1 kjikji
vv QQFF

kji ++ ∇=
+

. Therefore the key is how to compute the solution gradients at the flux points. 

The gradient of the conserved variables in the physical domain can be easily computed using 

 
( ) ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂

∂
+

∂

∂
=∇

∂
∂

+∇
∂
∂

+∇
∂
∂

=∇
ζηξ

ζ
ζ

η
η

ξ
ξ

ζηξ SQSQSQ
J

QQQQ
rrr

1 .                      (10) 

In deriving (10), we have used the following identity 

.0=
∂

∂
+

∂

∂
+

∂

∂

ζηξ
ζηξ SSS
rrr

 

The derivatives along each coordinate direction are computed using   

 4 
American Institute of Aeronautics and Astronautics 



 
( ) ( ) )(2/1

0
,,2/1

,

ξ
ξ ξ

ξ
+

=
+

′⋅=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
∑ r

N

r
kjr

kj

lSQ
SQ r
r

                                                (11a) 

 
( ) ( ) )(2/1

0
,2/1,

,

η
η η

η
+

=
+

′⋅=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
∑ r

N

r
kri

ki

lSQ
SQ r
r

                                        (11b) 

 
( ) ( ) )(2/1

0
2/1,,

,

ζ
ζ ς

ς
+

=
+

′⋅=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
∑ r

N

r
rji

ji

lSQ
SQ r
r

.                                               (11c) 

The following steps are taken to compute the viscous fluxes: 
 Same as Step 1 for the inviscid flux computations; 
 When computing the derivatives using (11), the solution Q at the cell interface is not uniquely defined. The 

solution at the interface is simply the average of the left and right solutions, 
2/)(ˆ

RL QQQ += . 
 Compute the gradients of the solution at the solution points using the solutions at the flux points with (10) 

and (11). Then the gradients are interpolated from the solution points to the flux points using the same 
Lagrangian interpolation approach given in (7).  

 Compute the viscous flux at the flux points using the solutions and their gradients at the flux points. Again 
at cell interfaces, the gradients have two values, one from the left and one from the right. The gradients 
used in the viscous fluxes at the cell interface are simply the averaged ones, i.e., 

)2/)(,2/)((~~
LLRL

vv QQQQFF ∇+∇+= . 
 
Time Marching  
Explicit scheme: Denote the residual at cell c )~( n

c QR . Obviously , the semi-discrete equation can be written as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂
∂

−==
∂
∂

ςηξ
HGFQR

t
Q n

c
c

~~~
)~(

~
. (12)

A multi-stage TVD Runge-Kutta scheme is used as the explicit scheme.

Implicit scheme: At each cell c, using the backward Euler difference, (1) can be written as

[])~()~()~(
~~

1
1

n
c

n
c

n
c

n
c

n
c QRQRQR

t
QQ

=−−
Δ
− +

+

 (13)

Let n
c

n
cc QQQ ~~~ 1 −=Δ + and linearizing the residual, we obtain

nb
cnb nb

c
c

c

cn
c

n
c Q

Q
RQ

Q
RQRQR ~~
~)~()~(1 Δ

∂
∂

+Δ
∂
∂

≈− ∑
≠

+ , (14)

where nb indicates all the neighboring cells contributing to the residual of cell c. Therefore, the fully linearized
equations for (3) can be written as

)~(~~
~ n

cnb
cnb nb

c
c

c

c QRQ
Q
RQ

Q
R

t
I

=Δ
∂
∂

−Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
Δ ∑

≠

. (15)

However, it costs too much memory to store the LHS implicit Jacobian matrices. Therefore, we employ a LU-SGS
scheme to solve (15), i.e., we use the most recent solution for the nb cells,

*)1(~)~(~
~ nb

cnb nb

cn
c

k
c

c

c Q
Q
RQRQ

Q
R

t
I

Δ
∂
∂

+=Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
Δ ∑

≠

+ . (16)

The matrix

 5
American Institute of Aeronautics and Astronautics

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
Δ

=
c

c

Q
R

t
ID ~ (17)

is the element (or cell) matrix, which is not too large for 2nd to 4th order SD schemes. (16) is then solved with a

direct LU decomposition solver. Since we do not want to store the matrices
nb

c

Q
R

∂
∂

, (16) is further manipulated as

follows. Note that

.~)~(~})~{,~(})~{,~(

~
~})~{,~(~

~)~(

**

c
c

c
cc

c

c
nbccnb

n
cc

nb
cnb nb

cn
nb

n
ccnb

cnb nb

cn
c

Q
Q
RQRQ

Q
RQQRQQR

Q
Q
RQQRQ

Q
RQR

Δ
∂
∂

−=Δ
∂
∂

−≈≈

Δ
∂
∂

+=Δ
∂
∂

+ ∑∑
≠≠ (18)

Combining (16) and (18) together, we obtain

t
QQRQQ

Q
R

t
I c

c
k

c
k

c
c

c

Δ
Δ

−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
Δ

+
*

*)()1()~()~~(~ . (19)

Eq. (19) is then solved with symmetric forward and backward sweeps. Note that once (19) is solved to machine
zero, the unsteady residual is zero at each time step. For steady state problems, the last term in (19) can be dropped
sometimes resulting in faster convergence rate.

Computation of the Jacobian Matrix
 Because of the way in which the viscous fluxes are computed, the present SD method uses cells which are

neighbors’ neighbors. If the analytical approach is used to compute the element Jacobian matrix
c

c

Q
R
~

∂
∂ , the

formulation would be very complex. In stead, the following numerical approach is used based on the definition

ε
ε)},({)},({

~ cnbccnbc

c

c QQRQQR
Q
R −+

≈
∂
∂ . (20)

where ε is a small parameter, e.g., 810−×≈ cQε . Although this approach is very easy to implement for arbitrarily
complex residual operators, it is quite expensive because each variable has to be changed. In practice, we have found
it is not necessary to compute the matrix at each iteration. Therefore, we often re-compute the matrix every 40-100
iterations. Numerical tests showed that this matrix-freezing approach did not significantly degrade the convergence
rate to the steady state.

III. Numerical Experiments
Couette Flow
The Couette flow is a steady analytical solution of the Navier-Stokes equations, and was selected to demonstrate the
performance with the implicit LU-SGS method. This problem models the viscous flow between a stationary, fixed
temperature () front plate, and a moving, fixed temperature () rear plate at speed of U. The distance between
the two plates is H. It has an exact solution under the simplification that the viscosity coefficient

0T 1T
μ is a constant.

The steady analytic solution is

0,0, === wvy
H
Uu

)1(
2

)(
2

010 H
y

H
y

k
UTT

H
yTT −⋅+−+=

μ

TR
ptconsp
⋅

== ρ,tan ,

where k is the thermal conductivity, and R is the gas constant.

 6
American Institute of Aeronautics and Astronautics

In our simulations, we chose . The computational domain is
[0,4]x[0,2]x[0,4]. We conducted an efficiency study of implicit LU-SGS method using 2

01.0,85.0,8.0,0.2,0.1 10 ===== μTTHU
nd to 4th order schemes on a

coarse grid with 16 (4x4x1) elements. The residual histories in terms of CPU time for 2nd to 4th order SD schemes
are compared with the explicit schemes in Figure 3. The implicit schemes showed over an order of magnitude
speedup. The residual histories in terms of iteration numbers and CPU times using the implicit schemes are plotted
in Figure 4. It is interesting to note that the convergence is nearly independent of the order of accuracy. Obviously, it
takes much more CPU time to converge the higher order schemes.

Steady viscous flow around a sphere
A steady viscous flow around a sphere is used here to demonstrate the performance with the implicit LU-SGS
method. The mesh used is shown in Figure 5. The Reynolds number based on the diameter was chosen to be 118
since an experimental streamline picture is available for comparison. This viscous flow computation was performed
using the 2nd to 4th order schemes. The computational streamlines agree well with experimental streamlines. The
explicit and implicit schemes are compared in Figure 6, which shows the convergence histories in terms of CPU
times. For all the tested schemes, the speedup with the LU-SGS algorithm is more than an order of magnitude and
up to 2 orders, fully demonstrating the effectiveness of the implicit algorithm. The implicit SD schemes of various
orders of accuracy are also compared in Figure 7. Note that the convergence in terms of iterations is nearly order
independent. It is also obviously the CPU times for higher order schemes increase non-linearly with respect to the
order of accuracy.

Laminar flow over NACA0012 airfoil
 In this test, we consider a subsonic viscous flow problem over the NACA0012 airfoil at an angle of attack

, free stream Mach number , and Reynolds number 00=α 5.0=M 5000Re = . This is a widely used validation case
for viscous flow solvers. The computational grid is displayed in Figure 8 with size . The larger number refers to the
number of cells distributed along the airfoil surface and the smaller one the number of cells in the radial and span-
wise direction. The grid extents about 20 chords away form the airfoil. The computations were performed using 2nd
to 4th order SD schemes. The wall is assumed to be non-slip and adiabatic, and is represented by a quadratic patch.
The Reynolds number is near the upper limit for a steady laminar flow. A distinguishing feature of this test case is
the separation region of the flow occurring near the trailing edge, which causes the formation of a small recirculation
bubble that extends in the near-wake region of the airfoil.
 Figure 9 shows the Mach contours computed with SD schemes of 3rd and 4th order of accuracy. It is obvious that
the solution is getting smoother and smoother with the increasing of the order of polynomial reconstruction,
indicating the solution is more accurate. The convergence history of explicit and implicit 3rd SD schemes is plotted
in Figure 10. The speedup factor in this case is estimated to be more than 2 orders. The residual histories of various
implicit schemes are plotted in Figure 11. Note that in this case, the convergence rate in terms of iterations is
strongly dependent on the order of accuracy. It is speculated that this is due to the high aspect ratio cells used in the
computational grid.

IV. Conclusions

In this paper, an efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solution algorithm has been
extended to viscous flow simulations using a high order multi-domain spectral difference method on unstructured
hexahedral grids. A numerical approach is developed to compute the element Jacobian matrix, resulting in
straightforward operations for arbitrarily complex residual operators. The implicit scheme has shown 1 to 2 orders of
magnitude of speed-up relative to the multi-stage Runge-Kutta explicit time integration scheme for several
demonstration problems..

Acknowledgements
 The study has been funded by Rockwell Scientific/DARPA under contract W911NF-04-C-0102, and partially
supported by the Air Force Office of Scientific Research. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, AFOSR, or the U.S. Government.

 7
American Institute of Aeronautics and Astronautics

References
1Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,

in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, edited by A. Quarteroni, Lecture Notes in
Mathematics (Springer-Verlag, Berlin/New York, 1998), Vol. 1697, P. 325.

2Lele, S.K., “Compact Finite Difference Schemes with Spectral-Like Resolution,” Journal of Computational Physics, Vol.
103, 1992, pp. 16-42.

3Visbal, M. and Gaitonde, D., Shock Capturing Using Compact- Differencing- Based Methods, AIAA-2005-1265.
4Tam, C.K.W., and Webb, J.C., “Dispersion-Relation-Preserving Finite difference Schemes for Computational Acoustics,”

Journal of Computational Physics, Vol. 107, No. 2, 1993, pp. 262-281.
5Patera, A.T., A Spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54,

468(1984).
6Kopriva, D.A. and Kolias, J.H., A conservative staggered –grid Chebyshev multidomain method for compressible flows, J.

Comput. Phys. 125, 244(1996).
7Kopriva, D.A., A Staggered-Grid Multidomain Spectral Method for the Compressible Navier–Stokes Equations, Journal of

Computational Physics, Volume 143, pp. 125-158, 1998.
8Barth, T.J. and Frederickson, P.O., High-Order Solution of the Euler Equations on Unstructured Grids using Quadratic

Reconstruction, AIAA Paper No. 90-0013(1990).
9Hu, C. and Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys. 150, 97

(1999).
10Cockburn, B. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for

conservation laws II: General framework, Math. Comput. 52,411(1989).
11Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional

systems, J. Comput. Phys., 141, 199 - 224, (1998).
12Bassi, F. and Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput.

Phys. 138, 251-285 (1997).
13Abgrall, R. and Roe, P.L., High Order Fluctuation Schemes on Triangular Meshes, Journal of Scientific Computing,

Volume 19, pp. 3 – 36, 2003.
14Wang, Z.J. and Liu, Yen, Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: Extension to

One-Dimensional Systems, J. Scientific Computing, Vol. 20 No. 1, pp.137-157 (2004).
15Wang, Z.J., Zhang, L., and Liu, Yen, Spectral (finite) volume method for conservation laws on unstructured grids IV:

extension to two-dimensional systems, J. Comput. Phys. 194, 716-741(2004).
16Liu, Y., Vinokur, M., and Wang, Z.J., Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids V:

Extension to Three-Dimensional Systems, Journal of Computational Physics Vol. 212, pp. 454-472 (2006).
17Sun, Yuzhi, Wang, Z.J., and Liu, Yen, Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids VI:

Extension to Viscous Flow, Journal of Computational Physics, Vol. 215,pp.41-58 (2006).
18 Liu, Y., Vinokur, M., and Wang, Z.J., Discontinuous Spectral Difference Method for Conservation Laws on Unstructured

Grids, in Proceeding of the 3rd International Conference in CFD, Toronto, Canada July 2004.
19Liu, Yen, Vinokur, M., and Wang, Z.J., Multi-Dimensional Spectral Difference Method for Unstructured Grids, AIAA-

2005-0320.
20Wang, Z. J., and Liu, Yen, The Spectral Difference Method for the 2D Euler Equations on Unstructured Grids, AIAA-

2005-5112.
21Huang, P.G., Wang, Z.J., and Liu, Yen, An Implicit Space-Time Spectral Difference Method for Discontinuity Capturing

Using Adaptive Polynomials, AIAA-2005-5255.
22Sun, Yuzhi, Wang, Z.J., and Liu, Yen, High-Order Multi-domain Spectral Difference Method for the Navier-Stokes

Equations on Unstructured Hexahedral Grids, Communications in Computational Physics Vol. 2, No. 2, pp. 310-333 (2007), and
also AIAA-2006-301.

23Sun, Yuzhi, Wang, Z.J., Liu, Y. and Chen C.L., Efficient Implicit LU-SGS Algorithm for High-Order Spectral Difference
Method on Unstructured Hexahedral Grids, AIAA-2007-0313.

24Venkatakrishnan, V., and Mavriplis, D.J., Implicit Solvers for Unstructured Meshes, Journal of Computational Physics,
Vol. 105, No. 1, 1993, pp.83-91.

25Venkatakrishnan, V., and Mavriplis, D.J., Implicit Method for the Computation of Unsteady Flows on Unstructured Grids,
Journal of Computational Physics, Vol. 127, No.2, 1996, pp.380-397.

26Soetrisno, M., Imlay, S.T. and Roberts, D.W., A zonal Implicit Procedure for Hybrid Structured-Unstructured Grids, AIAA
Paper 94-0645, Jan. 1994.

27Frink, N.T., Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows, AIAA Paper 96-
0292, Jan. 1996.

28Blanco, M., and Zingg, D.W., A Fast Solver for the Euler Equation on Unstructured Grids Using a Newton-GMRES Metod,
AIAA Paper 97-0331, Jan. 1997.

29Chen, R.F. and Wang, Z.J., Fast, Block Lower-Upper Symmetric Gauss-Seidel Scheme for Arbitrary Grids.

 8
American Institute of Aeronautics and Astronautics

0 10 20 30 40
CPU Time (s)

10
−14

10
−9

10
−4

10
1

R
es

id
ua

l

3−stage Runge−Kutta
Implicit LU−SGS

(a) 2nd order

0 50 100 150 200
CPU Time (s)

10
−14

10
−9

10
−4

10
1

R
es

id
ua

l

3−stage Runge−Kutta
Implicit LU−SGS

(b) 3rd order

0 200 400 600 800
CPU Time (s)

10
−14

10
−9

10
−4

10
1

R
es

id
ua

l

3−stage Runge−Kutta
BLU−SGS Implicit

(c) 4th order

Figure 3. Residual history in term of CPU Time for Couette flow

 9
American Institute of Aeronautics and Astronautics

0 10 20 30
Number of Iterations

10
−14

10
−9

10
−4

10
1

R
es

id
ua

l

2nd Order
3rd Order
4th Order

0 10 20 30
CPU Time (s)

10
−14

10
−9

10
−4

10
1

R
es

id
ua

l

2nd Order
3rd Order
4th Order

Figure 4. Convergence histories for various SD schemes on the same mesh

Figure 5. Sphere grids with quadratic boundary (768 elements)

 10
American Institute of Aeronautics and Astronautics

0 2000 4000 6000
CPU Time (s)

10
−14

10
−11

10
−8

10
−5

10
−2

R
es

id
ua

l

3−stage Runge−Kutta
Implicit LU−SGS

(a) 2nd order

0 5000 10000 15000 20000 25000 30000
CPU Time (s)

10
−14

10
−11

10
−8

10
−5

10
−2

R
es

id
ua

l

3−stage Runge−Kutta
Implicit LU−SGS

(b) 3rd order

0 10000 20000 30000 40000 50000
CPU Time (s)

10
−14

10
−11

10
−8

10
−5

10
−2

R
es

id
ua

l

3−stage Runge−Kutta
Implicit LU−SGS

(c) 4th order

Figure 6. Residual histories in term of CPU times for viscous flow over a sphere

 11
American Institute of Aeronautics and Astronautics

0 100 200 300 400
Number of Iterations

10
−14

10
−11

10
−8

10
−5

10
−2

R
es

id
ua

l

2nd Order
3rd Order
4th Order

0 2000 4000 6000
CPU Time (s)

10
−14

10
−11

10
−8

10
−5

10
−2

R
es

id
ua

l

2nd Order
3rd Order
4th Order

Figure 7. Convergence histories in terms of CPU times for various SD schemes

Figure 8. Computational grid around a NACA0012 airfoil

 12
American Institute of Aeronautics and Astronautics

(a) 3rd Order (b) 4th Order

Figure 9. Computed Mach number contours using 3rd and 4th order SD schemes.

0 10000 20000 30000
CPU Time

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

R
es

id
ua

l

3 Stage Runge−Kutta
Implicit LU−SGS

Figure 10. Convergence histories for 3rd order SD scheme

0 500 1000 1500 2000
Number of Iterations

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

R
es

id
ua

l

2nd Order
3rd Order
4th Order

0 5000 10000 15000 20000 25000
CPU Time (s)

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

R
es

id
ua

l

2nd Order
3rd Order
4th Order

Figure 11. Convergence histories in terms of CPU times for laminar flow over the NACA0012 Airfoil

 13
American Institute of Aeronautics and Astronautics

