Abstract
We reconsider the question of computing RE in very simple models in macroeconomics. For OLG models, we show existence in multiple classes of functions, with stability of iterations very sensitive to starting values. This multiplicity problem even exists for OLG economies where "uniqueness" results are known. For models with infinitely-lived agents, we first extend the uniqueness result in Coleman [12] to a much larger class of functions, but then show numerous other subclasses of RE exist using alternative fixed point procedures (and his uniqueness result is not robust to other computational procedures). Finally, for the economy studied in Santos [54], we show existing Correspondence-based Euler equation methods do not verify the existence of recursive equilibrium. We then propose a new correspondence-based continuation method (valued in function spaces) which does verify the existence of recursive equilibrium, but again the set of RE is again potentially very large. All our results point to complicated nature of the numerical problem of approximating RE even in very simple macro models.

We thank Subir Chakrabarti, Cuong LeVan, Rajnesh Mehra, Adrian Peralta-Alva, Ed Prescott, Manuel Santos, Yiannis Vailakis, Lukasz Woźny, and especially, Robert Becker for helpful discussions, as well as seminar participants at IU-PUI and ASU for their helpful comments. Manjira Datta and Kevin Reffett thank the Center d’Economie de la Sorbonne (CES) and the Paris School of Economics for graciously arranging their visits during the Spring terms of both 2009 and 2010.

†Manjira Datta, Department of Economics, Arizona State University; Leonard J. Mirman, Department of Economics, University of Virginia; Olivier F. Morand, Department of Economics, University of Connecticut; Kevin Reffett, Department of Economics, Arizona State University. Do not recirculate, rather write the corresponding author at Kevin.Reffett@asu.edu for the most recent version.
1. Introduction

Since the seminal work of Kydland and Prescott [28], a central focus of quantitative work in macroeconomics has been so-called "calibration methods" as applied to a recursive equilibrium (RE) in a dynamic general equilibrium model. In this method, one first fits an approximate solution to the actual model to relevant macroeconomic data, and then the model is perturbed in a manner that allows facilitates the comparison of the simulated equilibrium dynamics under two different parametric configurations under consideration.\(^1\) That is, in a very precise way, calibration is a numerical approach to equilibrium comparative statics/dynamics.

Now, when calibrating a RE to the data, one typically takes as given some subsets of parameters (e.g., taken from micro data or other related sources), and then searches over other parameters in an effort to minimize goodness of fit measures defined over the observed data. When this is done, the resulting calibrated model is perturbed in some important way, with new equilibrium dynamics regenerated. Unfortunately, one issue that is rarely addressed in this work concerns the stability of the set of approximate (and more importantly actual) RE under perturbation. So, for example, a calibration approach to equilibrium comparative statics can be very difficult to interpret in the presence of multiple equilibrium.

The problem in this case is that when one calibrates some particular RE to the data at an initial parameter vector and the RE is not necessarily unique at this parameter (hence, at best, the numerical procedure is merely computing some approximation to an arbitrary RE selection at this parameter), when the parameter is perturbed to generate the new equilibrium dynamics, if there are multiple actual RE, even if the approximation method is accurate at each parameter, one never knows not if the approximate solution at new parameter is in any sense comparable to the approximate solution at the original parameter. Additionally, RE can exist within distinct subclasses for functions (as they are solutions to systems of RE functional equations). When a parameter is perturbed relative to the calibrated solution, it is not clear approximate solutions will even stay within the same subclass of functions.

In this paper, we show how complicated the question of constructing RE actually can be. To show the robust nature of the problem, we study both OLG models, as well as models with infinitely-lived agents. For production, we just use a simple Solow-Cass growth model. For the case of simple OLG models, as equilibrium distortions are implicit in the structure of the model, we just work

\(^1\)That is, calibration can be often interpreted as a perturbation in a parameteri space.
with very simple model with 2 period-lived, identical cohorts and capital. For the infinitely-lived agent case, to make the model nonoptimal, we just add a simple state-contingent tax under perfect commitment (with lump-sum transfers back to a representative household). In these two simple settings, we are able to show some very important difficulties associated with the rigorous characterization of RE numerically. The problems hold for both function-based and correspondence-based continuation methods, all of which carryover to more complicated nonempty dynamic economies that are typical in the existing literature in macroeconomics.

For the OLG cases, we first consider OLG models with concave production functions in private returns for firms (e.g., often Cobb-Douglas) and power utility. For the case where production processes do not satisfy "capital income monotonicity", we prove existence of RE in *four distinct* subclasses of the space of bounded functions, none of which include continuous functions. Then, under the stronger condition of capital income monotonicity, we first prove (i) uniqueness of continuous RE, and show (ii) this uniqueness result holds relative to the space of bounded increasing functions. We then show the uniqueness result fails relative to the space of bounded functions. In all cases, we give explicit successive approximation methods for computing least and greatest RE in all subclasses of functions. The constructive nature of our arguments are critical (as it allows us to show explicitly how iterative methods can arrive at very different limits based upon the initial versions they choose.

We then turn our focus on the case of state-contingent taxes and infinitely-lived agents. The first case we study the progressive tax case studied first in Coleman [10]. For these economies, focusing first on the well-known Euler equation method first proposed in Coleman [10], we first extend the uniqueness result obtained in Coleman [10][12] to much *larger* class of functions, namely, particular spaces of *bounded* functions. We then show using two different fixed point procedures (i) the existence of continuous recursive equilibrium using a related Euler equation method to Coleman's where his uniqueness argument fails, and (ii) develop a very simple policy iteration method, whose domain is exactly the set of functions Coleman studies, but for which Coleman's uniqueness approach cannot be used to rule out multiple solutions in this same domain of functions.

Finally, we then consider the question of continuous RE in models often thought not to admit them (e.g., the example presented in Santos ([54], sec-

Our results also apply to the papers of Greenwood and Huffman [23], Coleman [11][12], Datta, Mirman, and Reffett [14], Morand and Reffett [40], and Mirman, Morand, and Reffett [35].
As the Santo’s example has been a central motivation for adopting correspondence-based approaches to characterizing recursive equilibrium (e.g., Miao and Santos [34], Feng et. al. [21], and Peralta-Alva and Santos [47]), reconsidering the question of continuous RE in this class of economies is particularly important. Using a new simple variation of Coleman’s policy iteration procedure, we construct multiple subclasses of RE ranging from locally Lipschitz isotone continuous recursive equilibrium (for investment) to bounded (not isotone) RE. In doing this, we also show the Miao-Santos procedure equilibrium correspondence fails to verify RE. Finally, we propose a new correspondence-based approach, based upon "interval iterations" of interval operators valued in function spaces, that integrate the function-based policy-iteration approach of Coleman [10], with the correspondence-based continuation method advocated in Kubler and Schmedders [26] and Miao and Santos [34]. For this interval mapping, we prove the existence of continuous recursive equilibrium for our class of economies, and prove a simple method for computing it approximately. We then develop a formal partial ordering method for making comparative dynamics comparisons of our new interval iteration method versus the existing class of correspondence-based continuation methods.

We can be a bit more formal in describing the problem. Say one writes down a class of economies $E(t)$ parameterized by a vector of "deep" parameters $t = (t_1, t_2) \in T$, where T is some ordered linear topological space (e.g., \mathbb{R}^n), with t_1 a subset of parameters that will be taken as given for the calibration step (e.g., parameter values are taken from micro or macro data, others summarize policy, etc), and t_2 will be the set of parameters used to calibrate the model to the actual data. Assume for each $t \in T$ the existence of a nonempty set of RE in some space of functions, say $RE(X)$ where X is a minimal state space for each t (i.e., there exists RE selections $\psi(x, t) \in \Psi(x; t) \subset RE(X)$, where $\Psi(x; t)$ is a nonempty correspondence valued in $RE(X)$ for each $t \in T$). Then, for the calibration step of the modeling, one first collects some relevant data (say $\{Y_t\} = Y$), imposes a loss function $L(\hat{\psi}; Y)$ on the class of approximations $\hat{\Psi}(x; \alpha, t_2)$ (where α is just a vector of parameters for the approximation scheme), and uses L to define some goodness of fit measure that compares the fit of the models equilibrium dynamics $\{y_t\} = y$ to the observed data Y, chooses the best parameter vector, say $t_2^*(Y) = t_2^*$ that is the best approximation under the loss function. Then, the resulting approximate solution $\hat{\psi}_1^*$ is now used as an approximation to the actual RE $\psi(x, t^*)$.

3Notice, this existence assumption is a very strong.
Finally, calibrated equilibrium comparative statics (or counterfactuals for the actual model) are then generated from perturbing the initial parameters t_1, recomputing the RE to arrive at a new approximate solution $\hat{\Psi}_2(x; t'_1, t'_2) \in \Psi(x; t'_1, t'_2)$ where t'_2 is now taken as fixed, and $\hat{\Psi}_2$ is an approximation solutions to an actual RE selection $\Psi_2(x, t'_1, t'_2) \in \Psi(x; t'_1, t'_2)$. One then just compares the models new dynamic properties at new parameter t'_1 to the old one t_1.

The question of continuity (i.e., stability) of this numerical equilibrium comparative statics method then immediately arises. For simplicity of notation, let $t_* = (t_1, t'_2)$ and $t'_* = (t'_1, t'_2)$. Then, a few immediate questions that come to mind are the following:

(a) Is the approximation scheme $(\hat{\Psi}(x; t), L)$ stable under perturbation: i.e., does there exist some topology such that the numerical approximation scheme has desirable continuity properties and satisfies $\hat{\Psi}_1(x, t) = \hat{\Psi}_2(x, t) = \Psi(x, t)$ for all t in any neighborhood of t_* that includes t'_*?

(b) Are actual RE $\Psi(x, t)$ stable under perturbation in t: i.e., \exists a RE selection $\Psi^*(x, t)$ in any neighbor t_* that includes t'_* where $\Psi^*(x, t)$ has desirable continuity properties; and

(c) Is the approximation $\hat{\Psi}^*(x, t)$ accurate relative the actual selection $\Psi^*(x, t)$ at t_* and t'_* (e.g., can one conduct error analysis for the approximation $\hat{\Psi}^*(x, t)$ under L in $\hat{\Psi}$ relative to the actual RE selection $\Psi^*(x, t) \in \Psi(x, t)$)?

In an important sense, answering question (b) is critical if one is to have a hope at resolving (a)-(c). That is, if one cannot produce conditions under which particular RE has desirable continuity/stability properties at least under local perturbations in t, achieving numerical stability and accuracy in the sense of (a)-(c) seems hopeless. Further, keep in mind that our problems, RE will not in general be sufficiently smooth to attempt applications of classically implicit function theorems.\footnote{Notice, here we assume here in this discussion that a unique approximate solution under this loss function exists (i.e., the best approximation problem generated by the loss function is strictly convex). Also, recall to design an accurate approximation scheme rigorously, one must know the structural properties of the objects that will be approximated (i.e., the structural properties of $RE(X)$). You cannot approximate an arbitrary function to an reasonable standard of accuracy. Therefore, knowing where one has existence is critical here to knowing how construct an appropriate approximation scheme where error bounds can constructed. Lets also assume all these problem can be resolved (a nontrivial task).

5Further, nonsmooth implicit function theorems will be difficult to apply also because of the infinite dimensional nature of the RE fixed point problem, along with the fact that RE in many cases need not be even be continuous functions, let alone locally Lipschitz continuous.
In this paper, we propose a different method to attack the stability question in (b) using order topologies (and in particular, we develop order continuous computational methods for least and greatest RE in each subclass of functions where we verify RE exist). In particular, using "lower" and "upper" solutions, we are able to develop simple parameterized iterative procedures that are order stable under ordered perturbations of t (and even in some cases, have extremal RE being continuous in an appropriate order topology). Then, given we are working in function spaces (and hence know the exact property of the unknown function at hand), resolving (a) and (c) becomes a fairly standard problem in approximation theory.

We should mention, this innovation is important for nonoptimal problems, verifying properties (a)-(c) is a daunting task. In the early work on quantitative macro using numerical methods to compute RE, resolving (a)-(c) was quite simple. That is, numerical implementations for computing RE could be where based upon the results in Prescott and Mehra [45]), where the economies studied were homogeneous agent Pareto optimal economies, so the second welfare theorem held. This situation is particularly convenient, as RE allocations and prices could be constructed by solving a single functional equation, namely a Bellman equation describing a pure resource allocation problem faced by a social planner on only aggregate states. Then, appealing to arguments of Bewley [7] or Prescott and Lucas [44], the social planner’s optimal solutions could be supported as recursive competitive equilibrium (RCE) with the implied sequential equilibrium price system existing in a suitable infinite dimensional space. Further, well-known tools are available for solving the Bellman equations (both from an theoretical and numerical perspective), the resulting methodological approach was very powerful. In particular, under standard strict concavity conditions on preferences, and convexity conditions for technologies, the RE computed from planner’s solutions were unique, the the planner’s optimal solutions $\psi^*_p(x,t)$ to each t (and associated value function $v^*_p(x; t)$) where continuous in t.6 Then, using standard methods for approximating solutions to dynamic programs (and appealing to duality and the second welfare theorem), the planners solutions can be decentralized under suitable support prices as a competitive (and recursive) equilibrium.7

6To establish the continuity of RE in t, on can simply appeal the Bonsall-Nadler theorem (e.g, Nadler [41] Theorems 1 and 2 and Duemmel [18], Main Theorem, p294) for parameterized contractions, noting as the modulus for the contraction is constant, the value function is continuous in t (so $v^*_p(x; t)$ is continuous in t),and by strict concavity and Berge’s theorem, $\psi^*_p(x; t)$ were continuous in t.

7From a theoretical perspective when entertaining questions concerning equilibrium com-
Unfortunately, things have changed a great deal over the last three decades. In most recent work, the setting for the analysis are dynamic economies where the second welfare theorem fails (i.e., so-called "nonoptimal" economies). For such economies, for even the simplest of cases (e.g., a homogeneous agent economy with one sector production, a state contingent tax and lump-sum transfers), the social planning procedures of Prescott and Mehra [45] are known generally to fail. As numerous interesting problems in dynamic general equilibrium take place in such nonoptimal settings (e.g., models of optimal taxation, monetary economies, heterogeneous agent models with incomplete markets, among others), and researchers want to compute and quantitatively assess elements of the set of RE \((x; t)\) in meaningful sense consist when conditions (a)-(c), the first question one must ask is what does the set of RE \(\Psi(x, t) \) look like in even simple dynamic economies? As even for simple models, one is forces to solve a systems of functional equations (e.g., often both parameterize dynamic programs and Euler equations simultaneously), the question of computing RE can become quite complex.

We should finally mention, various methods have been proposed in the current literature to resolve some (or all) these technical issues in the context of various economies. One important class of such methods are known as "monotone continuation methods". To date, two types of monotone continuation approaches have been proposed: (i) continuation methods defined in spaces of correspondences (i.e., so-called correspondence-based method first proposed in Kydland and Prescott [27], but extended in numerous papers including Kubler and Schmedders...
[26], or Miao and Santos [34]), among others), or (ii) continuation methods defined in spaces of functions (i.e., so-called function-based continuation method, or so-called monotone-map methods first proposed in Coleman [10][12], Greenwood and Huffman [23], Datta, Mirman, and Reffett [14] or Mirman, Morand, and Reffett [35]).

The paper proceeds as follows: in the next section, we study RE in simple two-period OLG versions of the Solow-Cass growth models. In section three, we use function-based continuation methods to study the structure of recursive equilibrium in situation of progressive taxation as in Coleman [10]. Section four then considers the same methods, but for the regressive tax case as in Santos [54]. Section five reconsiders both models, but only with correspondence-based methods. Here, in addition to applying the Miao-Santo’s procedure, we also construct a new correspondence-based procedure for constructing recursive equilibrium. Section six, then, makes concluding remarks. In the appendix, will include the proofs, a detailed appendix with all the mathematical terminology used in the paper, and statements of key fixed point theorems used in the proofs.

2. The Economies

To keep the issues raised in this paper clear, we focus our attention on the case of recursive equilibrium in simple class of Solow-Cass growth models. Time is discrete and indexed by \(t \in T = \{0, 1, 2, \ldots\} \). To keep things simple, we can just work with production processes that are either completely standard (e.g., Cobb-Douglas) or just concave in both private and social returns (e.g. as in Romer [50]), and assume no uncertainty. For the case of infinitely-lived agents, to make the economy nonoptimal, we will also include a state contingent income tax that is lump-sum return to households. For this latter case, we will assume the government has a perfect commitment technology to this policy.

For our OLG models, we assume the economy has a large number of identical agents are born each period who live for two periods. In their first period of life, they are endowed with a unit of time which they supply inelastically to the firm to earn a wage which they consume and/or save. In their second period of life, agents consume their savings. For the simplest case, we assume preferences are represented time separable utility function and completely standard (e.g., power utility). For the case of infinitely-lived agent models, we just extend the life spans of the agents, so there is a continuum of infinitely-lived and identical household/firm agents.
As for preferences, utility is derived from consumption in each period, and discounted in the case of infinitely-lived agents. For the OLG models, the young’s consumption is denoted by c_1, and consumption when old is denoted by c_2, and the commodity space is $X \subset \mathbb{R}_+$ each period with period utility functions given by $u(c)$ on X (or $X \subset \mathbb{R}_{++}$ if period utility is given by $u(c) = \ln c$). For the infinitely-lived agent case, households get utility from lifetime consumption, solve standard consumption-savings problems each period, and have time separable utility with constant discounting. Households are endowed with a unit of time which they supply inelastically to competitive firms, and enters any given period with an individual level of the capital $k \in K$, facing an economy in aggregate state $K \in \mathbb{R}_+$ (where K is the per-capita capital stock). Then, household’s lifetime preferences are defined over sequences indexed by dates and histories $c = (c_t)$ and are given by:

$$U(c) = \sum_{t=0}^{T} \beta^t u(c_t)$$

where β is the discount rate. For the OLG case, we just take in (1) that $T = 2$, and $\beta = 1$, while for infinitely-lived agent models, we assume $T = \infty$, and $\beta \in (0, 1)$.

We first discuss some

Assumption 1. The utility function $u : X \to \mathbb{R}_+$ is either $u(c) = \ln c$ or $u(c)$ satisfies:

I. once continuously differentiable;
II. strictly increasing in each of its arguments and jointly concave;
III. $\lim_{c \to 0^+} u(c) = +\infty$

Following that tradition of work on RE in nonoptimal economies (e.g., Greenwood and Huffman [23] and Mirman, Morand, and Reffett [35]), we consider reduced-form production functions that admit a nonclassical specification denoted $F(k, n; K, N)$. In all cases, we assume F is constant returns to scale in private inputs (k, n) for each level of aggregate inputs (K, N). The following assumptions on F, adapted from the literature on nonoptimal stochastic growth, are completely standard. Anticipating $n = 1 = N$ in any equilibrium with inelastic labor supply, we state our assumptions as follows:

9 Although the original work of Coleman [10] did not cover the unbounded homogeneous returns case, Morand and Reffett [40] show all his results can be extended to this case.

10 For example, one can just assume $u(c)$ is power utility as is typical in applied work.
Assumption 2. The production function $F(k, n, K, N) : X \times [0, 1] \times X \times [0, 1] \rightarrow \mathbb{R}_+$ is:

I. twice continuously differentiable jointly all its arguments;
II. strictly increasing and strictly concave in all its arguments, and supermodular in its first two arguments;
IIIa. such that $r(k, z) = F_1(k, 1, k, 1)$ is antitone in k, and $\lim_{k \to 0^-} r(k) = +\infty$;
IIIb. such that $w(k, z) = F_2(k, 1, k, 1)$ is isotone in k, and $\lim_{k \to 0^+} w(k) = 0$;
IV. such that there exists a maximal sustainable capital stock k_{\max} (i.e., $\forall k \geq k_{\max}$ such that $F(k, 1, k, 1) \leq k_{\max}$, and with $F(0, 1, 0, 1) = 0$.

It is well known that Assumption 3 IV implies that the set of feasible capital stocks can be restricted to be in the compact interval $X = [0, k_{\max}]$ as long as we place the initial capital stocks in X. This condition, along with (IIIa and IIIb) also place restrictions on the amount of nonconvexity we can allow. The following two additional assumptions will help establish sharper properties of the RE, the latter being sufficient to exclude economies in which 0 may be the only RE (and will lead to the construction of minimal RE by successive approximations).

Assumption 3 F is such that $\lim_{k \to 0^+} r(k)k = 0$

Finally, when we consider uniqueness of RE, we will use the following capital monotonicity assumption:

Assumption 4: F is such that (a) $r(k)k$ is increasing in k, and (b) $r(k)$ is decreasing in k.

We remark that Assumptions 3 and 4 are satisfied for example in the Cobb-Douglas production case. Assumption 4 is not satisfied for general concave production in private inputs (with no externalities). Further, in the case of production externalities as in Romer [50] we could have $F(k, 1, K, 1) = k^\eta K^\alpha$ for $\eta < 0$, $\alpha \in (0, 1)$, and $|\eta| > \alpha$, which also violates Assumption 4.12

Firms are identical, and endowed with standard constant returns to scale technology (where, again, for the sake of illustration, we shall often study the case of Cobb-Douglas production). There no nonconvexities in production., There are no shocks. The single source of nonoptimality in the macroeconomy is a state

11The isotonicity assumption is standard; the continuity assumption may be weakened to upper semicontinuity.
12This latter case can be thought of a negative production externalities (e.g., one way of introducing a social cost to capital accumulation like in models of environmental degradation).
contingent income tax that is redistributed via lump-sum transfers. To keep our issues focused, we consider only two types of equilibrium distortion: (i) a progressive income tax, and (ii) a regressive income tax. We assume perfect commitment for the government for all periods, and the proceeds of the taxes are redistributed lump-sum back to households each period.

The capital-labor ratio chosen by a typical firm is denoted by x, where technology is represented by a twice continuously differentiable, concave, constant returns to scale production function $F(x,n)$ for each firm in the economy, where n is the typical firms labor demand. Anticipating equilibrium, given inelastic labor supply, we have $n = N = 1$, and $x = K$. 13 From profit maximization, this implies the market equilibrium prices of capital is $r = F_1(K,1,K,1)$, and the price of labor is $w = F_2(K,1,K,1)$. To create a simple class of equilibrium distortions for the infinitely-lived agent models, we assume that the government taxes all sources of income using a state-contingent marginal tax rate of $\tau(K) \in [0,1)$, and then rebates the tax revenues back to households lump sum in the amount $J = \tau m$.

In this paper, we only consider two cases of taxation: (i) $\tau(K)$ increasing in K (e.g., "progressive" taxation"), and (ii) $\tau(K)$ is decreasing in K (e.g., "regressive" taxation).14

Assumption 5: (i) (Progressive taxation) $\tau : R_+ \to [0,1)$, is locally Lipschitz, and monotone increasing (i.e., isotone); (ii) (Regressive taxation): $\tau : R_+ \to [0,1)$, is locally Lipschitz, and monotone increasing (i.e., isotone); (iii) (Lump sum transfers) $J : R_+ \to R_+$ is locally lipschitz continuous.

A few remarks on our assumptions. First, relative to the existing literature, Assumptions 1-5 are completely standard. It bears mentioning that although Assumption 1 and 2 imply bounded equilibrium growth (i.e, the existence of a maximal capital stock k^* (so the state space can be taken to be bounded and $K=[0, k^*]$), this assumption is only made for convenience (e.g., for the case of unbounded states spaces, see Morand and Reffett [40]). Second, the class of equilibrium distortions consistent with Assumption 3 have are common in the literature. The local Lipschitz structure for taxes and transfers is a very mild

13All of our results can be shown to hold for models with elastic labor supply where leisure enters in separably into preferences (or, more generally, are supermodular). We discuss these issues at the end of the paper.

14The term "progressive" and "regressive" is a bit casual. We can easily rewrite the state variable for this economy to be after-tax income, and then make the tax literally an progressive/regressive income tax. Here, we are using K to proxy for the level of income.
assumption, and have been used in many papers (e.g., Santos [54]). For the progressive tax case (e.g., Coleman [10]), if we only seek continuous (but not necessarily locally Lipschitz continuous) recursive equilibrium, we can relax the local Lipschitz properties in Assumption 3 to just continuity. As for the case of regressive taxation, we do need the Lipschitzian properties for the taxes imposed in Assumption 3.

3. RE in Simple OLG Models

This section addresses the issues of existence, characterization and construction of extremal minimal state space RE. Our proofs rely on the Euler equation methods (see, for instance, Coleman [10], Datta et al. [14], and Mirman, Morand, and Reffett [35]). As a direct consequence of Tarski’s fixed point theorem, the set of fixed points of this operator is a non-empty complete lattice, and by construction all fixed points but the trivial 0 are RE. We then show we can construct lower bounds in some cases, which make remove the problem of trivial RE. The construction of extremal RE is always done by successive iterations in this paper, which therefore relies on some form of order continuity of the operator.

3.1. Some Useful Complete Lattices

We begin by defining the classes of complete lattices where we shall (a) prove existence of RE, and (b) compute least and greatest RE for economies under A1-A3. All spaces shall be endowed with the pointwise partial order, and will have some "upper solution" m^i where i will index the properties of the space. First, given any bounded function $m_b : X \rightarrow \mathbb{R}^+$, define the set $B_{m_b}(X) = \{ h : X \rightarrow \mathbb{R}_+, 0 \leq h \leq m_b \}$ (we shall refer to this set as the set of "bounded functions"). If the upper bound m_I is isotone (i.e., non-decreasing in its arguments), the set $H_{m_I}(X) = \{ h : X \rightarrow \mathbb{R}_+, 0 \leq h \leq m_I \}$. If in addition, m is continuous in k (in the usual topology on \mathbb{R}), define the set $H_m = \{ h : X \rightarrow \mathbb{R}_+, 0 \leq h \leq m, h$

\footnote{The non-linear operator in this paper differs from the one in the infinitely-lived agent models cited above.}

\footnote{The order theoretic terminology we use in the paper is not standard in the literature. Useful references for such terminology include [16][56][58].}

\footnote{Let $f : X \rightarrow X$, X partially ordered under \leq, and let $x^* \in \Psi_f$ be the set of fixed point of f. We say an element m is an upper solution (resp, lower solution) is for all $x^* \in \Psi_f, x^* \leq m$ (resp, $m \leq x^*$).}
upper semicontinuous in \(k \in X \) (resp., \(H^l_m = \{ h : X \to \mathbb{R}_+, 0 \leq h \leq m, h \text{ lower semicontinuous in } k \in X \} \)). We have the following proposition

Lemma 1. The posets \((B_{n_{B}}, \leq), (H_{m_{1}}, \leq) (H^u_{m}, \leq) \) and \((H^l_{m}, \leq) \) are complete lattices.

Proof. That \((B_{n_{B}}, \leq) \) and \((H_{m_{1}}, \leq) \) are complete lattices is obvious. Let \(B \subset H^u_{m} \), denote \(g_\wedge (k) = \inf_{h \in B} h(k) \). Clearly \(0 \leq g_\wedge \leq w \), \(g \) is isotone, and \(g_\wedge (k) \) is usc (i.e., see Aliprantis and Border [5], Lemma 2.41). Thus \(g_\wedge \) is a greatest lower bound of \(B \). Since \(m \) is the top element of \(H^u_{m} \), it is a complete lattice (e.g., Davey and Priestley [16], Theorem 2.31). Dually, for \(A \subset H^l_{m} \), define \(g_\vee (k) = \sup_{h \in A} h(k) \). Clearly \(0 \leq g_\vee \leq w \), \(g \) is isotone, and \(g_\vee (k) \) is lsc. Again, as the bottom element is continuous (i.e., \(\land H^l_{m} = 0 \)), \(H^l_{m} \) is a complete lattice. \(\blacksquare \)

3.2. Computing RE in Each Subclass

We now discuss how to compute RE in distinct subclasses of functions (i.e., RE with distinct structural properties). We first formulate the household’s problem. Given a competitive wage \(w = m_{B} \) in the labor to the market, in a candidate RE \(h \in B_{w} \), a typical young agent of any generation must decide what amount \(y \) to save for next period consumption when they retire. To make this decision, the agent uses \(h \) to compute the expected continuation return on her capital investment, as well as future competitive wages and returns on capital use the firms profit maximization problem with \(w(k, z) = F_2(k, 1, k, 1) \) and \(r(k) = F_1(k, 1, k, 1) \). Let \(X^* = X \setminus 0 \), and select \(k \in X^* \) and \(h \in B_{w} \). Then, a young agent solves:

\[
\max_{x \in [0, w(s)]} u(w(k) - x) + u(r(h))x
\]

Let \(x^*(k, h(k)) \) be the optimal solution to this household problem in 2. Let \(RE(X) \subset K^X \), where the exponential space \(K^X = \{ h : h : X \to K \} \) given the topology of pointwise convergence and the pointwise partial order. Then any RE can be characterized as follows:

Definition 2. A Recursive Equilibrium (RE) is any function \(h^*(k) \in RE(X) \) and a policy function \(x^*(k; h^*(k)) \) such that (i) for all \(k \in X^* \), \(h^*(k) > 0 \), we have

\[
x^* = x^*(k; h^*(k)) = h^*(k)
\]

with \(h^*(s) = 0 \), otherwise, and (ii)

\[
-u'(w(k) - x^*) + u'(r(h^*(k))x^*)r(h^*(k)) = 0
\]
Notice, in our definition, we restrict our attention to the case of RE that have memory only on the current states of the economy. We consider existence of RE in our four subclasses of RE(X) (namely, B(X), H(X), H^u(X), and H^l(X)). To construct such RE in each of these subclasses, we introduce the nonlinear operator A defined implicitly in the HH equilibrium Euler equation follows

Definition 3. Given any \(h \in B \) (resp, \(H, H^u, H^l \)), define the operator \(A \) as follows: If \(h(k) > 0 \), then \(A(h(k)) \) is the unique solution for \(x \) to:

\[
Z(y; k; h) = -u'(w(k) - x) + u'(r(h(k)))r(x) = 0
\]

and \(A(h)(k) = 0 \) whenever \(h(k) = 0 \).

By inspecting the definition of our operator, as \(A(h)(k) \) corresponds with \(x^*(k; h) \) for each \((k, h) \), we then have a function \(h^* \) is a RE if and only if it is a non-zero fixed point of the operator \(A \), and the issues of existence, characterization, and construction of extremal RE simply follow from the study of the set of nontrivial fixed points of \(Ah \).

We now prove existence of RE existence in each of these subclasses, and provide explicit iterative procedures that convergence within in each subclass (but not in the other subclasses). To do this, we prove three lemmas first. In our first lemma, we show how \(Ah \) transforms on four spaces, and is isotone.

Lemma 4. Under Assumptions 1, 2, (a) \(A \) is an isotone self map on \((H^u_w, \leq) \) and \((H^l_w) \). Further, (b) \(\exists \) upper solutions \(m_b \) (resp, \(m_I \)) such that \(Ah \) is an isotone self map on \((B_{m_b}, \leq) \) and \((H_{m_I}, \leq) \).

Proof. (a) Consider \(h \in H^u_w, h > 0 \). As \(h \) is usc and isotone in \(k \), \(Z(y, k, h) \) is right continuous at every \(k \in X \), increasing in \(k \) and strictly decreasing in \(x \) under A1 and A2, the unique solution to 5 is \(A(h)(k) \), which is usc and isotone in \(k \). Hence, \(A(h)(k) \in H^u_w \) for such \(h \). Noting the definition of \(Ah \) elsewhere, we have \(A(h)(k) \in H^u_w \).

To see \(Ah \) is isotone on \(H^u_w \), as \(Z \) is also increasing in \(h \), each \(k \), we have \(Ah \) isotone on \(H^u_w \) whenever \(h > 0 \). Noting the definition of \(Ah \) elsewhere, \(Ah \) isotone on \(H^u \). As similar argument shows \(Ah \in H^l_w \) and is isotone.

\(^{18}\)It is easy to verify the existence of a unique solution under Assumption 1.
(b) First, we use $Ah \in H^*_w$ to construct both m_b and m_I. Consider $0 < k^* < k^{**} < k_{\text{max}}$. Define the following two functions

\[
m_b(k) = \begin{cases}
0 & \text{for } k = 0 \\
A(w)(k) & \text{for } 0 < k < k^* \\
A^2(w)(k) & \text{else}
\end{cases}
\]

and

\[
m_I(k) = \begin{cases}
0 & \text{for } k = 0 \\
A^2(w)(k) & \text{for } 0 < k < k^* \\
A(w)(k) & \text{for } k^* \leq k \leq k^{**} \\
w(k) & \text{else}
\end{cases}
\]

By construction, m_b (resp, m_I) is a bounded function, not semicontinuous or increasing (resp, a bounded increasing but not semicontinuous) function. Further, m_b (resp, m_I) are upper solutions in the space $B_{m_b}(X)$ (resp, $H_{m_I}(X)$) as they are clearly not fixed points of Ah in either space (and all the fixed points, if nonempty, my be lower in order than m_b (resp, m_I).

Now, consider $h \in B_{m_b}$ (resp, $h \in H_{m_I}$) with $h > 0$. As Z is bounded in k (resp, Z is bounded and increasing in k), and Z is strictly decreasing in x, when $h > 0$, $A(h)(k) \in B_{m_b}$ (resp, $A(h)(k) \in H_{m_I}$). Noting the definition of Ah elsewhere, $A(h)(k) \in B_{m_b}$ (resp, $A(h)(k) \in H_{m_I}$). Further, as Z is increasing in h (resp, increasing in h), Ah is isotone on B_{m_b} (resp., isotope on H_{m_I}). Noting the definition of $A(h)(k)$ elsewhere, Ah is isotone on B_{m_b} (resp, H_{m_I}).

We now define two distinct, yet related, notions of order continuity that we shall use in the paper to check conditions under which we can compute RE by successive approximation. Both notions of continuity refer to the interval topology.

Definition 5. A function $F : (P, \leq) \to (P, \leq)$ is order continuous if for any countable chain $C \subset P$ such that $\forall C$ and $\land C$ both exist,

$$\forall \{F(C)\} = F(\lor C) \text{ and } \land \{F(C)\} = F(\land C).$$

The function F is order continuous along F generated chains from $x_0 \in P$ if for all n

$$\forall F^n(x_0) = F(\lor x_n)$$
where the sequence \(\{x_j\}_j \) is generated recursively as
\[
x_{j+1} = F(x_j), \quad x_0 \in P \text{ given}
\]

We now show under pointwise partial orders, our operator \(Ah \) is order continuous along \(A \)-generated chains in all of its relevant domains (e.g., \(W, H, H^u \), and \(H^l \)).

Lemma 6. (i) Under Assumptions 1 and 2, (a) the set of fixed points of \(A \) in \((B_{m_b}, \leq)\) (resp, \(H_{m_l}, \leq)\), \((H^u_{w_l}, \leq)\) and \((H^l_{w_l}, \leq)\) is a non-empty complete lattice,
(b) \(A \) is order continuous along \(F \) generated chains in all four spaces

Proof. (a) The complete lattice structure of these sets of fixed points follows from Tarski’s fixed point theorem, noting each subclass \((B_{m_b}, \leq)\) (resp, \(H_{m_l}, \leq)\), \((H^u_{w_l}, \leq)\) and \((H^l_{w_l}, \leq)\) is a complete lattice by Lemma 1, and \(Ah \) is an isotone self map by Lemma 4.

(b) Next, we prove order continuity along increasing \(F \) chains by showing that for any increasing sequence \(\{g_n\} \) in \((B_{m_b}, \leq)\) or in \((H_{m_l}, \leq)\), we have
\[
\sup(\{Ag_n(s)\}) = A(\sup\{g_n(s)\}).
\]

For such a sequence and for all \(s \in S \), the sequence of real numbers \(\{g_n(k)\} \) is increasing and bounded above (by \(w(k) \)), thus \(\lim_{n \to \infty} g_n(k) = \sup\{g_n(k)\} \). For the same reason \(\lim_{n \to \infty} Ag_n(k) = \sup\{Ag_n(k)\} \). By definition, for all \(n \in \mathbb{N} \), and all \(k \in X^* \):
\[
-u'(w(k) - Ag_n(k)) + u'(r(g_n(k)))Ag_n(k)r(Ag_n(k)) = 0
\]

The function \(u' \) is continuous (Assumption 1), and \(r \) is continuous (Assumption 2), hence taking limits when \(n \) goes to infinity, we have:
\[
-u'(w(k) - \sup\{Ag_n(k)\}) - u'(r(\sup\{g_n(s)\}))\sup\{Ag_n(k)\}r(\sup\{Ag_n(k)\}) = 0
\]

which implies that \(A(\sup\{g_n(k)\}) = \sup\{Ag_n(k)\} \). A symmetric argument can easily be made for any decreasing sequence \(\{g_n\} \) in \((B_{m_b}, \leq)\) or in \((H_{m_l}, \leq)\). This establishes (b) for \((B_{m_b}, \leq)\) or in \((H_{m_l}, \leq)\). A similar argument can be used for \((H^u_{w_l}, \leq)\) and \((H^l_{w_l}, \leq)\).

Our final lemma is particularly important for verifying the existence of non-trivial minimal RE. As is clear from the definition of \(Ah \), in all cases of subsets
of W, $h^* = 0$ is a trivial fixed point. Therefore, the next lemma find a minimal element of H^l that maps up. Note that we construct this lower bound h_0 to be lsc so that the iterations $\{A^n h_0\}$ will be an increasing sequence of lsc functions, which therefore converges in order to the lsc function $\lor \{A^n h_0\}$.

Lemma 7. Under assumptions 1, 2, and 3, (a) there exists a function $h_0 \in (H^l_w, \leq)$ such that (i) $\forall k \in X^*, Ah_0(k) > h_0(k) > 0$, and (ii) $\forall h \in (0, h_0], Ah > h$ on X^*.

Proof. See McGovern, Morand, and Reffett [33], Appendix A, noting there are no shocks in our economies, and under Assumptions A1, preferences are additively separable. ■

We are now prepared to prove our first theorem on the existence of RE in the class of bounded functions and isotone bounded function, as well as characterize the structure of the set of RE. In the Theorem, h_0 is the function constructed in Lemma 7. What will be critical in the next few theorems is to notice the key role played in the arguments by the upper and lower solutions relative to fixed point sets of our operator Ah when it maps in different domains. That is, first notice in this theorem below, we study existence of RE in subcomplete order intervals spaces B_w and H_w (where w is taken to be the upper solution that tops the space, and the lower element of the order interval is given by h_0 in Lemma 7. 19 Therefore, what this theorem verifies is two facts: (i) how to very the existence of a complete lattice of of nontrivial RE, as well as compute least and greatest RE for our OLG economies under A1-A3 relative to the space of bounded functions $B_w \cap [h_0, w]$ (resp, bounded isotone functions $H_w \cap [h_0, w]$) with upper solution w, as well as (ii) showing that both least and greatest RE in this case actually belong to spaces of functions with stronger structural properties than either $B_w \cap [h_0, w]$ (resp, $H_w \cap [h_0, w]$). In particular, per (ii) the greatest RE is in $H^1_w \cap [h_0, w]$, while the least RE be in either $H^l_w \cap [h_0, w]$ or $H^u_w \cap [h_0, w]$). As a matter of notation, the fixed point set Ah in the space B_w (for example) will be denoted by $\Psi_{B_w}^A$.

19This observation is important, as what we are showing in this theorem is that if one works in the space of functions B_w (resp, H_w), where the upper solution that define the space is w (which is a continuous isotone function), the greatest fixed point will always be in H^u_w (i.e., a space of functions with stronger structural properties that B_w (resp, H_w). This means if we want to compute RE in a larger subclass than H^u_w, we must to change the upper solution to the function m_b (resp, m_I) that is defined in the proof of Lemma 4, where m_b (resp, m_I) are only bounded (resp., only bounded and increasing), but always discontinuous.
Theorem 8. Under Assumptions 1, 2, and 3: (a) there exist a nonempty complete lattice of nontrivial RE in $B_w \cap [h_0, w]$ (resp, $H_w \cap [h_0, w]$), (b) the least RE $h_{\min} = \land \Psi^{B_w \cap [h_0, w]} = \land \Psi^{H_w \cap [h_0, w]}$ in $(B_w \cap [h_0, w], \leq)$ (resp, in $(H_w \cap [h_0, w], \leq)$) is an isotone lsc (i.e., $h_{\min} \in H^l_w \cap [h_0, w]$, while the greatest RE is (B_w, \leq) (in (H_w, \leq)) is $h_{\max} = \lor \Psi_{w}^{B_w} = \lor \Psi_{w}^{H_w}$ is an isotone usc function (i.e., the greatest RE in H^u_w). Further, we can modify our iterations in (b) to compute a least usc isotone RE in $H^u_w \cap [h_0, w]$. Finally (d) all these extremal RE can be constructed by successive approximations.

Proof. (a) From Lemma 7, Ah transforms the complete lattice of bounded functions $[h_0, w] \subset B_w$ (resp, $[h_0, w] \subset H_w$). By Lemma 4, Ah is isotone. The result then follows from Tarski’s theorem. (e.g., Tarski [55], Theorem 1).

(b): We first compute by successive approximation the least RE in H^l_w. By lemma 7, when restricted to the order interval $H^l_w \cap [h_0, w]$ (which is a complete lattice itself), we have $0 < h_0 = Ah_0$. As Ah is order continuous (e.g., Lemma 6), by the Tarski-Kantorovich Theorem (i.e., Dugundji and Granas [19], Theorem 4.2), we have $\lor \{A^n h_0\} = h_{\min} = \land \Psi_{w}^{H^l_w}$ when $k > 0$ where $\Psi_{w}^{H^l_w}$ denotes the fixed points of Ah in $H^l_w \cap [h_0, w]$. That is, we have

$$h_{\min}(k) = \lor \{A^n h_0\}(k) = \lim_{n \to \infty} A^n h_0(k) = \sup \{A^n h_0(k)\} = \land \Psi_{w}^{H^l_w}.$$

where h_{\min} is lsc as it is the upper envelope of a family of elements of lsc functions, and hence in H^l_w. It is therefore the minimal bounded isotone and lsc RE in $H^l_w \cap [h_0, w]$. It is also the minimal RE in $H^l_w \cap [h_0, w]$ as $h_0 \in H^l_w$. It is a nontrivial RE as $h_{\min}(k) > 0$ when $k > 0$, so it satisfies the RE functional equation in 3.

Similarly, we can compute the maximal RE in $(B_w \cap [h_0, w], \leq)$ as the inf (pointwise limit) of a decreasing sequence beginning at w. That is, is:

$$h_{\max}(k) = \land \{A^n w\}(k) = \lim_{n \to \infty} A^n w(k) = \inf \{A^n w(k)\},$$

which implies that $h_{\max} \in H^u_w$ since it is the lower envelope of a family of elements of $(H^u_w \cap [h_0, w], \leq)$.

(c) We next compute the least RE in H^u_w. Following the same argument as in Theorem 8, it is only a matter of correcting h_{\min} above at most at a countable number of points to obtain the minimal bounded isotone and usc RE. Specifically, the minimal RE in (H^u_w, \leq) is the function $g_{\min} : X \to X$ defined as:

$$g_{\min}(k) = \inf \{\sup \{A^n h_0(k')\} \}_{k' > k}$$

$$= \inf \{\lor \{A^n h_0\}(k')\} \forall k \in [0, k_{\max})$$
and $g_{\text{min}}(k_{\text{max}}) = \vee \{A^n h_0\}(k_{\text{max}})$. Indeed, by construction $g_{\text{min}} \in H^u_w$, $g_{\text{min}}(k)$ and $h_{\text{min}} = \vee \{A^n h_0\}(k)$ differ at most at the discontinuity points of $\vee \{A^n h_0\}(k)$, and $g_{\text{min}}(., z)$ is the smallest usc function greater than $\vee \{A^n h_0\}(k)$. In addition, since $\vee \{A^n h_0\}$ is lsc, for any $k \in X$, $g_{\text{min}}(k) = \lim_{k' \rightarrow k^+} \vee \{A^n h_0\}(k')$. For any $k \in [0, k_{\text{max}})$, and for all $k' > k$, by definition of $h_{\text{min}}(k') = q(k')$:

$$-u'(w(k) - g_{\text{min}}(k)) + u'(r(q(k))q(k))r(q(k')) = 0$$

which proves that, $A g_{\text{min}}(k) = g_{\text{min}}(k)$. The set of RE in (H^u_w, \leq) is then simply the set of fixed points of A that are bounded, isotone, and usc.

(d) this is obvious by the constructions in parts (b) and (c).

We now prove a second existence theorem concerning the existence and computation of non-trivial least and greatest RE within the subclasses B_{m_b} and H_{m_I}. That is, in this theorem, we want to consider the existence of RE that are bounded, but not isotone (i.e., in subintervals of B_w but not in H_w), or bounded and isotone, but not not semicontinuous (i.e., in subintervals of H_w, but in neither H^u_w and H^l_I). We can use the results of the previous Theorem to obtain least RE with these properties. To obtain greatest RE that are not in H^u_w, we must change the upper solutions w to a new function (i.e., either m_b or m_I defined in equation 6 and 7, respectively).

Theorem 9. Under Assumptions 1-3, there exists a complete lattice of RE in $B_{m_b} \cap [h^b_0, m_b] \subset B_w$ (resp, $H_{m_I} \cap [h^I_0, m_I] \subset H_w$) where h^b_0 and h^I_0 are nontrivial lower solutions in B_w and H_w, respectively. Further, the least and greatest RE in each subclass can be computed by successive approximations.

Finally, note that it is easy to modify the usc function h_{max} at most at a countable number of points to construct the maximal bounded isotone and lsc RE.

3.3. On Uniqueness of RE

Under the additional assumption of capital income monotonicity, we can sharpen our results. Specifically, we prove three things. First, we show in our context the
existence of a unique Lipschitz continuous isotone h^*. A related result has been shown previously in Wang [57], Morand and Reffett [37] and McGovern, Morand, and Reffett [33]. Second, we prove this uniqueness result remains valid related to H_w, that is the space of bounded isotone functions. Finally, we prove this uniqueness result fails in the space B_w (bounded functions).

Theorem 10. Under Assumption 1-4, (i) there exists a unique bounded isotone RE h^* in H. Further, the corresponding (Markovian) equilibrium consumption policy, $w - h^*$ is also isotone, which implies that both h^* and $w - h^*$ are Lipschitz continuous. Further, this uniqueness result relative to the space B_m.

Proof. Under capital income monotonicity, for all $k \in X^*$ the following equation in y:

$$-u'(w(k) - x) + u'(r(x)x)r(x) =$$

has a unique solution. Notice, if $h^*(k)$ is RE in H_w (which exists by Theorem 8, for example). Let $k_1 \geq k_2 > 0$. As $h^*(k)$ is increasing, under assumption A4,

$$-u'(w(k_2) - h^*(k_2)) + u'(r(h^*(k_1))h^*(k_1))r(h^*(k_1)) \leq 0$$

Therefore, it must be the case that $h^*(k_1)$ is such that $w(k_1) - h^*(k_1)$ is increasing in k. But as $h^*(k)$ is also increasing in k, and $w(k)$ is locally lipschitz of modulus $w'(k)$ near each k, $h^*(k)$ is an element of an equicontinuous collection with pointwise bound $w'(k)$. As $L = \sup_{k \in X} |w'(k)| < \infty$, this implies $h^*(k)$ is Lipschitz of modulus L on $(0, k_{max})$. By a standard Lipschitz extension argument, as $w(0) = 0 = h^*(0)$, $h^*(0)$ is a Lipschitz extension of $h^*(k)$ for $k > 0$, and we can wlog have $h^*(k)$ Lipschitz of modulus L on all of $[0, k_{max}] = X$. So this proves the first part of the theorem.

Finally, for each $k \in X^*, l w(k) - h^*(k)$ and $h^*(k)$ are increasing in k, and Z defined below

$$Z(h^*, k, h^*) = -u'(w(k) - h^*(k)) + u'(r(h^*(k))h^*(k))r(h^*(k))$$

Is falling in $h \in H_w$ at h^* when $h \neq h^*$, there cannot be two solutions to this functional equation. That is, $h^*(k)$ is a unique lipschitz RE, and that is true for any other candidate RE $h \in H_w$ with $h \neq h^*$. So this proves the second part of the theorem.

Finally, we stress two important facts: (i) capital income isotonicity is not necessary for uniqueness of RE (as shown by the following example shows), and (ii)
the uniqueness of RE even under capital income monotonicity only holds relative to spaces of isotone RE (i.e., this uniqueness result is not robust to RE many subsets of W). We first show that capital income is not necessary for uniqueness by example.

Example 11. Consider the utility function:

$$\ln(c_t) + \ln(c_{t+1}),$$

in which case the maximization problem of an agent is:

$$\max_{x \in [0, w(s)]} \left\{ \ln(w(s) - x) + \int_Z \ln(r(h(s))x) \right\},$$

and the associated first order condition is

$$(w(s) - x) = x,$$

so that the unique continuous RE is the function $h^*(k) = .5w(k)$. Notice, under log utility, h disappears from the first order condition, so solving for the unique continuous RE in this special case is very simple.

Now, we conclude with a corollary to Theorem 9, which explicitly computes an RE in B_w where Theorem 10 fails

Corollary 12. In the space (B_{m_b}, \leq), the successive approximations $\inf_n A^n(m_b) \rightarrow h^b_{\text{max}} \notin H_w$

Proof. Follows from Theorem 9, noting that a constant function cannot satisfy the RE functional equation 3. ■

3.4. Ordered Perturbations and Stable Iterations

We finally consider ordered perturbations of the primitive data of our OLG economies, and show how our monotone methods can be used to study the question of existence of tractible computable selections. To do this, we first impose a slight modification of assumption 1:

Assumption 1’: $u(c)$ satisfies A1 plus (i) $u(c)$ is such that $u'(r \cdot x)r$ is increasing in r, and (ii) $u(c_1) + \beta u(c_1)$, for $\beta > 0$.
Assumption 1 would be met, for example, for models with power utility. With this in mind, we now introduce partial orders on the primitive data of the economy. Let F be the space of production functions satisfying Assumption A2. Define the gradient order on F as follows: for $f_1 \in F$, and $f_2 \in F(K)$, with $f_1(0, 1, 0, 1) = f_2(0, 1, 0, 1)$, we say $f_1 \geq f_2$ if for all $K > 0$, $f_1(k, 1, K, 1) - f_2(k, 1, K, 1)$ is increasing in k. Notice, this is actually introduces a partial order on $F(K)$ for each $K > 0$.

We then have the following computable equilibrium comparative statics result:

Theorem 13. Let $Ah(k; f, \beta)$ be the operator on $B^* = B_{mk} \cap [h^b, m_b]$ (resp, $H^* = H_{m'} \cap [h^b, m_b]$, $H^{u*} = H_{w'} \cap [h^b, w]$, $H^{l*} = H_{w'} \cap [h^b, w]$). Let $\Psi_A^B(f, \beta)$ (resp, $\Psi_A^H(f, \beta)$, $\Psi_A^{H^{u*}}(f, \beta)$, $\Psi_A^{H^{l*}}(f, \beta)$) be the set of RE in B^* (resp, H^*, H^{u*}, H^{l*}). Then, under A1’-A3, $\Psi_A^B(f, \beta)$ (resp, $\Psi_A^H(f, \beta)$, $\Psi_A^{H^{u*}}(f, \beta)$, $\Psi_A^{H^{l*}}(f, \beta)$) are each nonempty complete lattices, with least and greatest RE in each class increasing selection. Further, the iterations from least and greatest elements of each space B^* (resp, H^*, H^{u*}, H^{l*}) converge in order to these increasing selections.

Proof. That $\Psi_A^B(f, \beta)$ (resp, $\Psi_A^H(f, \beta)$, $\Psi_A^{H^{u*}}(f, \beta)$, $\Psi_A^{H^{l*}}(f, \beta)$) be the set of RE in B^* (resp, H^*, H^{u*}, H^{l*}) are nonempty complete lattices for each (f, β) follows from Tarski’s theorem. Using the definition of $Ah(k; f, \beta)$ in $Z(x, k, h)$, one can easily verify $Ah(k; f, \beta)$ is increasing in both (f, β) (where the partial order on F is the gradient order). The fact that that least and greatest elements of $\Psi_A^B(f, \beta)$ (resp, $\Psi_A^H(f, \beta)$, $\Psi_A^{H^{u*}}(f, \beta)$, $\Psi_A^{H^{l*}}(f, \beta)$) are increasing selections follows, therefore, from Veinott’s fixed point comparative statics theorem. The computability result follows from the order continuity of $Ah(k; f, \beta)$ and the Tarski-Kantorovich theorem.

4. RE in Economies with Infinitely-Lived Agents and Progressive Taxes

We now consider infinite horizon economies with progressive taxes (i.e., exactly the economy studied in Coleman [10][12]. It is a special case of the economies studied in Mirman, Morand, and Reflett [35]. For these economies, we begin by constructing a recursive representation of a typical household’s decision problem that we shall repeatedly appeal to throughout the paper. We again seek recursive equilibrium on a minimal state space. In this case, a household enters the period
with individual capital stock \(k \) facing prices in the economy generated by an aggregate capital stock \(K \), with all future capital stocks calculated using a fixed law of motion on that aggregate capital stock

\[K' = h(K) \]

with initial states \((k_0, K_0) \in X = K \times K \subset \mathbb{R}_+^2\) given. Let this beginning period state variable, therefore, be denoted by \(s = (k, K) \in X \). Let \(B(X) \) denote the space of bounded functions endowed with (i) the topology of uniform convergence, and (ii) the pointwise partial order, and \(B_f(X) \) be a subset of \(B(X) \) that consist of all the socially feasible aggregate laws of motion; i.e.,

\[B_f(X) = \{ h(s) | 0 \leq h(x) \leq r(K)k + w(K) \} \subset B(X) \]

Notice, for an equilibrium trajectory, we shall have \(k = K \), so \(r(x)x + w(x) = f(x) \), so \(s_D = (k, k) \in D = \{ s \in X | s = (k, k), k \in K \} \). Notice, \(D \) is an diagonal subspace of \(X \). Endow \(B_f(X) \) with its relative topology and relative partial order. The collection \(B_f(X) \) is a complete sublattice in \(B(X) \).

For simplicity, we assume household’s own the firms, and rent the factors of production to those firms in competitive markets. Using the definitions of \(r \) and \(w \), and appealing to zero profits under constant returns to scale in Assumption 2, the household income process can be written equivalently as either \(y^1 \) or \(y^2 \) in the following expression:

\[y^1(k, K) = (1 - \tau(K))\{ f(K) + (k - K)r(K) \} + J(K) \]
\[= (1 - \tau(K))\{ r(K)k + w(K) \} + J(K) \]
\[= y^2(k, K) \]

where \(y^i : K \times K_{++} \to \mathbb{R}_+ \) for \(i = 1, 2 \). For simplicity, let’s write the budget correspondence just using \(y^1 = y \), so household’s budget correspondence can be written as:

\[\Psi(k, K) = \{ c, k' | c + k' \leq y(k, K), c \geq 0, k' \geq 0 \} \]

In equilibrium, where \(k = K \), as the government’s budget constraint is imposed, we require \(\tau f = \tau(rK + w) = J \). Therefore, the household’s income processes can

\(^{20}\)It will become clear in a moment why keeping track of the two different equivalent expressions for household’s income process is useful. As a convention, unless we mention \(y^2 \), we will use \(y = y^1 \) as the HH income process.
be written, respectively, as

\[
y(k, k) = f(k) = y^2(k, k) = rk + w
\]

Under Assumptions 1, 2, and 5, as \(f, r, w, \tau \) and \(J \) are each at least locally Lipschitz, so the household’s feasible correspondence \(\Psi^i(k, K) \) is locally Lipschitz continuous on \(K \times K \) when \(K > 0 \).

Let \(K^* = K \setminus 0 \), and \(X^*=K\times K^* \). To construct a recursive representation of the household’s decision problem, for a household entering a period in state \(s = (k, K) \in X^* \) in a candidate recursive equilibrium \(h \in B^f(X) \), when \(h > 0 \), we can construct a unique value function \(V^* : K \times K^* \times B^f(X) \) that satisfies the following parameterized Bellman’s equation:

\[
V^*(k, K; h) = \sup_{x \in \Psi(k, K)} \{u(y(k, K) - x) + \beta V^*(x, h(K))\}
\]

where the household’s feasible correspondence is simply \(\Psi(k, K) = \{0, y(k, K)\} \).

Under Assumptions 1, 2 and 5, appealing to a standard argument in the literature, it can be shown that the unique real-valued solution to this Bellman equation is a function \(V^*(k, K; h) \) in the set \(W = \{V : K \times K^* \times B^f \to R, \nu (i) \text{ isotone in } k, \text{ each } (K, h), (ii) \text{ strictly concave (hence, continuous) in } k \text{ for each } (K, h)\}\). Further, additionally, by the Mirman-Zilcha lemma, \(V^*(k, K; h) \) also (iii) has an envelope theorem in \(V^*_1(k, K; h) = u'(y^*_x)r(1 - \tau) \), where (iv) the optimal policy \(x^* = x^*(k, K; h) \) is single valued and continuous in its first argument. Allowing for unbounded returns above in our setting is not a problem. (See Morand and Reffett [40] for power utility, or Morand, Reffett and Wang [42], more generally).

Notice, if in addition, \(h(K) \) is continuous, \(x^*(k, K; h) \) is also continuous in \(K \). Therefore, in any recursive equilibrium \(h^* \in B^f \), when \(k = K, h^* \) must be such that conditions (i)-(iv) hold for equilibrium value function \(V^*(k, k; h^*) \) and unique optimal solution \(x^*(k, K; h^*) \). Defining the mapping \(y_{x^*} = y - x^* \), we

21See Rockafellar [52] for a discussion of Lipschitizian properties of correspondences.

22That is, the key step to dealing with the unbounded below case is to first solve the Euler equation abstractly, and then use well-known methods for solving dynamic programming problems with unbounded returns in a candidate to show there exists, and has a unique value function evaluated at a (positive) equilibrium solution that satisfies a necessary and sufficient Euler equation. This can be done by a modification of the local contraction arguments in Martins-Da-Rocha and Vallakis [31] in our deterministic model. See Reffett [48] for a discussion.
can construct a necessary and sufficient first order characterization of the unique optimal solution \(x^* = x^*(k, K, h) \) as:

\[
u'(y_{x*}) - \beta u'(y_{x*})(x^*, h(K)) r(h(K))(1 - \tau(h(K))) = 0 \quad (12)\]

With these properties of \(V^*(k, k; h^*) \) and \(x^*(k, K; h) \) now clear, we now ready define an recursive equilibrium for our economies as follows:23

Definition 14. A recursive equilibrium is any function \(h^*(k, k) \in B^f(X) \), such that (i) positivity: \(h^*(k, k) > 0 \) and \((f - h^*)(k, k) > 0 \) when \(k \in K^* \), (ii) RE functional equation: \(h^*(k, k) = x^*(k, k; h^*(k, k)) \), and \(h^*(k, k) = 0 \), else, and (iii) Necessary Structural Properties for HH optimization in RE: when \(k > 0 \), given a law of motion \(h^*(k, K) \in B^f \), when \(k = K \), (a) Strict concavity, individual states: there is a dynamic program \(V^*(k, k; h^*(k, k)) \) that solves (11), strictly concave in its first argument, that satisfies the Bellman equation (11) with associated unique optimal solution \(x^*(k, k; h^*(k, k)) \); (b) Envelope theorem holds: \(V^*(k, k; h^*(k, k)) \) has an envelope theorem \(V_1^*(k, k; h^*) = u'(y_{x*})r(K)(1 - \tau(K)) \) at \(x^*(k, k; h^*(k, k)) \), and (c) Euler equation is satisfied: \(x^*(k, k; h^*(k, k)) \) can be characterized by the necessary and sufficient Euler equation (12).

We need to make a remark at this point. In this definition above, we emphasize the requirements that any recursive equilibrium must satisfy. In particular, \(h^*(k) \) is a RE iff conditions (i), (ii), and (iii.a-iii.c) hold. The key conditions that will be a problem to check for correspondence based recursive methods (e.g., Phelan and Stacchetti [46], Kubler and Schmedders [26], Miao and Santos [34] and Feng, et. al. [21]) will be continuity requirements that any RE must satisfy along the diagonal of a function \(x^*(k, K, h^*(k, k)) = h^*(k, k) \) in its first argument. More on this in the next section for the regressive tax case. It also bears mentioning that for any correspondence-based continuations method that does not work in function spaces (i.e., all of the methods in the existing literature), the requirement of continuity in the individual state variables along the diagonal is

23The requirement of interiority of consumption implied in our definition is a natural requirement for a recursive equilibrium. For example, it is needed to show that the candidate recursive equilibrium decision rule \(a^*(k, k, h^*(k, k)) = h^*(k, k) \) induces sequential equilibrium with a price system in an appropriate dual space to the (infinite) commodity space. Although this is not the focus of this paper, proofs for our economies can be built from the recent results presented in Morand, Reffett and Wang [42] for this economy.
demanding. For example, it implies that for $G^\ast(k, k)$ the equilibrium correspondence generated by the "APS" type operator, one must guarantee the existence of a selection, say $g^\ast(k, k) \in G^\ast(k, k)$, that is continuous in its first argument (hence, guaranteeing the resulting Generalized Markov equilibrium decision rule for investment $k' = x^\ast(k, k; g^\ast(k, k)) \in X^\ast(k, k; g^\ast(k, k))$ is a continuous selection in its first argument). This condition is very difficult to check even in very simple one dimensional problems as we shall argue in Section 5 of the paper, as the typical equilibrium correspondence $G^\ast(k, k)$ is simply a nonempty upper semicontinuous correspondence in its arguments. More in this in the next section.

We first consider function-based continuation methods for our economies under Assumptions 1, 2, and 3(i) and 3(iii) (that is, nonoptimal Cass growth with a state-contingent progressive tax, and lump-sum transfers.) For these economies, we prove two new results. First, we extend the uniqueness result obtained in Coleman [12] for his policy-iteration procedure to a much larger class of domains (namely, a class of bounded functions with bounded consumption functions, not necessarily even monotone). We then construct a second new fixed point procedure that is not policy iteration, but admits a complete lattice of (locally Lipschitz) continuous fixed points, where at least its least fixed point (for equilibrium investment) is a recursive equilibrium. This recursive equilibrium cannot be guaranteed to be in Coleman's fixed point set obtained using policy iteration.

4.1. Some Useful Complete Lattices

Any discussion of solution methods for functional equations begins with a discussion function spaces that serve as domains for fixed points of operators used to solve the equations. At this stage, we define a number of function spaces that we use in the paper. We begin with subsets of the bounded socially feasible decision rules $B^f(X)$. For the moment, let $s = (s_1, s_2) \in X$ for the moment, where $s_1 = k$, and $s_2 = K$. To guarantee our solutions are recursive equilibrium satisfy conditions (iii.a)-(iii.c) along their diagonal (where $s_1 = s_2$), it is important keep track of individual vs. aggregate states separately. Therefore, partition the components of the state space $x \in X$ as $x = (s_1, s_2) \in X_1 \times X_2 = X \subset \mathbb{R}^2_+$, where s_1 can be viewed as a individuals holds of capital, while s_2 is the aggregate state of the

24 We introduce this new notation just to make clear we are dealing with individual states $x_1 = k$ vs. aggregate states $x_2 = K$ separately in each argument. We will really be interested in the case where $k = K$, so $x_D \in D$ which is the diagonal of X, but the structural properties of our spaces that we define will be often asymmetric with respect to the components of x.
economy’s per capita capital stock, \(X_1 = X_2 = K\). Consider a subset of \(B^f(X)\) consisting of a set of upper semicontinuous, monotone functions on \(X\):

\[
\text{UCS}(X) = \{ h(x) \in B^f | h(x) \text{ monotone increasing (isotone)} \text{ and upper semicontinuous in } x \}
\]

For an element \(h \in \text{USC}(X)\), if we interpret a typical element \(h(x)\) as an candidate equilibrium investment decision rule, notice the implied equilibrium consumption \(c^*(x) = y(x) - h^*(x)\) is lower semicontinuous in \(x\) (and not necessarily isotone).

An important subset of \(\text{USC}(X)\) occurs when consumption decisions rules \(c = y - h\) are also isotone on \(X\), namely, the space:

\[
\text{C}(X) = \{ h(x) \in \text{USC}(X) | h(x) \text{ continuous, s.t. } y(x) - h(x) \text{ is isotone in } x \}
\]

The space \(\text{C}(X)\) is the domain for policy iteration methods studied in Coleman [10][12] (as well as many subsequent related papers on policy iteration methods based upon equilibrium versions of the household’s Euler equations). Therefore, for \(h \in \text{C}\), as both \(h(x)\) and \(c(x) = y(x) - h(x)\) are isotone in \(x\), \(h(x)\) and its implied consumption \(c(x)\) are necessarily continuous (as with both \(c(x)\) and \(h(x)\) are increasing, hence, locally Lipschitzian with modulus \(y'(x) = f'(x)\) near \(x \in X, x > 0\)). Give the subcollections \(\text{USC}(X)\) and \(\text{C}(X)\) their relative topologies and partial orders to the space \(B^f(X)\).\(^{25}\)

In our first lemma, mention the order completeness properties of subsets of \(B^f\) under pointwise partial orders:

Lemma 15. \(B^f\) is a complete lattice; (ii) \(\text{USC}\) is subcomplete in \(B^f\), (iii) \(\text{C}\) is subcomplete \(\text{USC}(X)\).

Proof. To see the completeness claims, let \(B \subset B^f\). As the pointwise inf and sup of \(B\) satisfies the pointwise bounds, i.e., \(0 \leq \inf_x B \leq m, \) and \(0 \leq \sup_x B \leq m\), we have \(\land B \in B^f\) and \(\lor B \in B^f\). Hence, \(B^f\) is a complete lattice.

\(^{25}\)In our subsequent discussion, when the context for \(X\) is obvious, we shall refer to these spaces \(B^f, \text{USC}, \) and \(\text{C}\), respectively, where the domains of the functions defining each space is understood.
Further, as monotonicity in x (resp, equicontinuity at x) are preserved also under pointwise sup and inf operations in X, if $B \subseteq C$, $\land B \subseteq C$ and $\lor B \subseteq C$. Hence, C is a complete lattice.

Finally, if $B \subseteq USC$, then the pointwise inf of any arbitrary B is upper semi-continuous (e.g., Aliprantis and Border [5], lemma 2.41)). As $\lor USC = y(x)$ is continuous, by the characterization of a complete lattice in Davey and Priestley ([16], Theorem 2.31), USC is complete lattice.

Finally, noting obvious sublattice and subchain inclusions, the subcomplete-ness and subchain completeness claims in the lemma follow.

We next consider subsets of $B^f(X)$ where the restrictions on $h \in B^f(X)$ are stated in terms of their implied properties on the inverse of marginal utility of consumption. To do this, we first construct an analog to space of bounded feasible decision rules $B^f(X)$ in terms of inverse marginal utilities. We can let the inverse marginal utility implied for any element $h \in B^f(X)$ be denoted by:

$$m_h(x) = \begin{cases}
\frac{1}{u'(y(x) - h(x))}, & \text{for } h \in B^f(X), \ u'(y - h) > 0 \\
0, & \text{else}
\end{cases}$$

Under Assumption 1, the function $m_h(x)$ is well-defined. Recalling Assumptions 1, 2, and 3(i) and 3(iii), it is known that for our economies, there exists a maximal sustainable capital stock, say $k^u > 0$. Therefore, we can define the maximal sustainable inverse marginal utility of consumption as $m^u_0 = \frac{1}{u'(y(k^u, k^u))}$. Noticing $m^u(0,0) = 0$, define the set of socially feasible inverse marginal utilities is given as follows:

$$M^f(X) = \{m|0 \leq m \leq m^u(k, k)\}$$

Notice, as promised, the space $M^f(X)$ is simply a restatement of the space $B^f(X)$ in the previous section. That is, we have $h \in B^f$ iff $m = \frac{1}{u(h)} \in M^f$.

One important subset of $M^f(X)$ occurs when continuous $m \in M^f(X)$, and is an element of the following subcollection:

$$M^4(X) = \{h(x) \in B^f(X)|h(x) \text{ continuous, } 0 \leq m_h \leq m^u_0, \text{ s. t.}\}$$

$$0 \leq |m_h(x') - m_h(x)| \leq \frac{1}{u''(y(k^u, k^u))}\}$$

For an investment function $h(x)$ to be consistent with the inverse marginal utility level $m(x) \in M^4(X)$, we only require the equilibrium decision rules to have an
implied consumption function that has an implied variation of its inverse marginal utility an element of a collection of functions that each exhibit (uniform) equicontinuity near each x bounded above by m'_f. Therefore, for $h \in \mathbb{M}^A$, as $u(c)$ is C^2, $c(x) = y - h$ is also locally Lipschitz continuous in x. Therefore, as y is also locally Lipschitz under A2 and A5, $h(x)$ is locally Lipschitz (as Lipschitz structure is closed under scaler multiplication and addition).

Finally, consider the following subset of $\mathbb{M}^f(X)$ that also prove useful in our subsequent arguments:

$$M(X) = \{ m \in \mathbb{M}^f(X) | m \text{ s.t. } \frac{R_v(k)}{m(k,k)} \text{ strictly decreasing } k \text{ for } k > 0 \}$$ \hspace{1cm} (13)

The subset $M(X) \subset \mathbb{M}^f(X)$ is closely related to the domain of functions studied on Coleman [12] for his uniqueness argument (the difference being that for $m(x) \in M(X)$, we do not required $m(x)$ to be continuous).

Endow $\mathbb{M}^f(X)$ with the pointwise partial order, and give the subsets \mathbb{M}^d and \mathbb{M} each their relative partial orders and topologies. First, note, that \mathbb{M} is not order closed; hence, is not a suitable domain for existence arguments via order theoretic fixed point methods (e.g., Tarski’s theorem or its variants). $\mathbb{M}(X)$ will prove very useful for uniqueness arguments. In the Lemma 16, we discuss the order completeness properties of the remaining function spaces \mathbb{M}^f and \mathbb{M}^A:

Lemma 16. (i) $\mathbb{M}^f(X)$ is a complete lattice; (ii) $\mathbb{M}^A(X)$ is chain complete.

Proof. Proof: That $\mathbb{M}^f(X)$ is a complete lattice follows directly from $\mathbb{B}^f(X)$ a complete lattice (noting, the one-to-one lattice morphism defined in (??) between elements of $\mathbb{M}^f(X)$ and $\mathbb{B}^f(X)$.

Further, as \mathbb{M}^A is equicontinuous and pointwise compact, it is a compact subset of the space of continuous functions on X in the topology of uniform convergence. Hence, in the pointwise partial order, by a theorem in Amann (e.g., Amann ([4], Theorem 10), $\mathbb{M}^A(X)$ is chain complete. $lacksquare$

In the subsequent discussion, when the context is clear, for all function spaces, we will delete the reference to the state-space X (e.g., $C(X)$ is denoted as C). We are now ready to discuss function-based approaches to equilibrium in our economies with a progressive tax.
4.2. A New Uniqueness Result

The first function-based method we consider is the policy iteration method proposed in Coleman [10] [12]. Coleman’s procedure can be defined as follows: for \(h \in \mathbb{C} \), rewrite the equilibrium version of the household’s Euler equation in (12) as the mapping \(Z_A : \mathbb{K} \times \mathbb{X} \times \mathbb{C} \rightarrow \mathbb{R} \):

\[
Z_A(x, k, k, h) = u'(x) - \beta u'(y_h(y_x))R_r(y_x)
\]

where, the function \(R_r(K) = r(K) \cdot (1 - \tau(K)) \) denotes the distorted return on capital, and, \(y_h = y - h \). Then, a nonlinear operator \(A(h)(k, k) \) can be constructed implicitly using \(Z_A \) as follows:

\[
A(h)(k, k) = \begin{cases}
 x^* & \text{s.t. } Z_A(x^*(k, k, h), k, k, h) = 0, \quad k > 0, \quad h > 0, \quad \forall k \\
 0 & \text{else.}
\end{cases}
\]

It is important to remember the operator equation \(A(h)(k, k) = h \) is only an abstract operator equation (with solutions that are not necessarily recursive equilibrium). Therefore, to make its fixed points of \(A(h) \) recursive equilibrium, further argument is typically required.

The properties of iterative methods based upon the Coleman procedure have been studied extensively in the literature. For the sake of completeness, we summarize what is known about the solutions to the operator equation \(A(h) = h \) in \(\mathbb{C} \):

Proposition 17. (Coleman [10][12] and Mirman, Morand, and Reffett [35]). Let \(\Psi_A^C \) be the set of fixed points associated with \(A(h)(k, k) \). Then, under Assumptions 1-3(i) and 3(iii), \(\Psi_A^C = \{0, h^*(k, k)\} \subset \mathbb{C} \), with \(h^*(k, k) = \vee \Psi_A > 0 \) when \(k > 0 \). Further, the iterations \(\lim_{n} A^n(f) = \sup_{n} A^n(f) \rightarrow h^* \) (where the convergence is both in topology and order, respectively). Finally, \(h^*(k, k) \) is \(C^1 \) when \(k > 0 \).

26 We shall referred to this procedure as the "Coleman’s procedure". See also Bizer and Judd [9]. This procedure has been studied in a number of other papers. See Mirman, Morand, and Reffett ([35], Section 4) for a detailed set of references.

27 We should note, we consider the mapping \(Z_A \) (and all similar mappings in the paper) to be a real-valued function. We are careful to only use \(Z_A \) to define our operators when it is real-valued. This makes the need for the extended reals unnecessary.

28 Although the focus here is on economies with bounded state spaces, Morand and Reffett [40] extend Coleman [10][12] to the case of unbounded state spaces, and power utility. Further generalizations are also available. See Morand, Reffett and Wang [42].
We now extend the uniqueness result for the policy iteration methods in Proposition 17 to a more general setting. Following Coleman [12], we construct a second operator whose fixed points can be shown to be isomorphic to those of $A(h)(x)$ using the domain $M(X)$. To do this, define the function $H(m)$ implicitly by:

$$u'(H(m)) = \frac{1}{m} \text{ for } m > 0, \text{ 0 elsewhere.}$$

The function $H(m) = c(m)$ is the consumption level required to obtain the inverse marginal utility level of $\frac{1}{m}$ when $m > 0$. Under Assumption 1, as $u'(c)$ is strictly decreasing, for each $m > 0$, the mapping H is well-defined, bounded, strictly increasing, and it has the following important boundary properties: (i) $\lim_{m \to 0} H(m) = 0$, and (ii) $\lim_{m \to f} H(m) = f = m^u$.

Using the function H, for each $m \in M$, next consider the mapping $\hat{Z}_A : K \times K \times K \times M$ based, again, upon an on equation (12) as follows:

$$\hat{Z}_A(x, k, k, m) = -\frac{1}{x} + \beta \frac{R_r(y - H(x))}{m(y(k, k) - H(x), y - H(x))}$$

Define a new nonlinear operator $\hat{A}m(k, k)$ implicitly in $\hat{Z}_A(x, k, k, m)$ as follows:

$$\hat{A}m(k, k) = \{ x^*(k, k; m) \mid \hat{Z}_A(x, k, k, m) = 0 \text{ for } m > 0, \text{ 0 elsewhere} \}.$$

In Lemma 18, we show the operator $\hat{A}m(k, k)$ is well-defined, transforms the space M into itself, and has strong geometric properties when restricted to the domain M.

Lemma 18. Under Assumptions 1, 2, 3(i) and 3(iii), $\hat{A}m(k, k)$ is well-defined in $M(X)$, with $\hat{A}(m)(k, k) \in M$, and $H(\hat{A}m)(k, k) \in C(X)$. Finally, $\hat{A}m(k, k) \in M(X)$, $\hat{A}m(k, k)$ isotone, pseudo concave, and k_0-monotone.

Proof. Proof: As \hat{Z}_A is (i) strictly increasing in x, each (k, k, m), $m > 0$, $\hat{A}m(k, k)$ is well-defined. For $k_1 \geq k_2 > 0$, the second term in \hat{Z}_A falls. Therefore, for such (m, k), have $\hat{A}(m)(k_1, k_1) \geq \hat{A}(m)(k_2, k_2)$. Noting the definition of $\hat{A}m(k, k)$, under Assumption 2 and 3(i), $\hat{A}(m)(k, k)$ is isotone in (k, k). Therefore, $\hat{A}(m)(k, k) \in M$.

To see $\hat{A}(m)(k, k)$ is such that $H(\hat{A}(m))(k, k) \in C$, simply note that as $\hat{A}(m)(k, k)$ is increasing in k, when $k_1 \geq k_2 > 0$, $m > 0$, then as the first term of
\(\hat{Z}_A \) must fall, \(\hat{A}(m)(k, k) \) must be such that the second term of \(\hat{Z}_A \) falls; hence, as \(m \in \mathbf{M} \), \(\hat{A}(m)(k, k) \) is such that \(y(k, k) - H(\hat{A}(m))(k, k) \) is increasing in \(k \). As \(H(\hat{A}(m))(k, k) \) is also increasing in \(k \), \(\hat{A}(m)(k, k) \) is such that \(H(\hat{A}(m))(k, k) \in \mathbf{C} \).

Let \(m' \geq m, m > 0 \) and \(k > 0 \). As \(\hat{Z}_A \) is strictly decreasing in \(m \), for such \((m, k)\), \(\hat{A}(m')(k, k) \geq \hat{A}(m)(k, k) \). Again, noting the definition of \(\hat{A}(m)(k, k) \) elsewhere, we have \(\hat{A}(m)(k, k) \) isotone on \(\mathbf{M} \).

Finally, that \(\hat{A}(m)(k, k) \) is pseudo-concave and \(k_0 \)-monotone follows from Coleman ([12], Lemma 3 and 4, respectively).

We now are ready to prove the following important result in this section. That is, we extend of the main uniqueness theorem in Coleman [12] to a much larger set of functions:

Theorem 19. Let \(h^* \) be the unique positive fixed point in Proposition 17. Then, under Assumptions 1, 2, 3(i) and 3(iii), the set of fixed points of \(\hat{A}(m)(k, k) \) is \(\Psi^M_{\hat{A}} = \{0, m^*\} \subset \mathbf{M}(\mathbf{X}) \), with \(m^* > 0 \) when \(k > 0 \). The iterations \(\inf_{m} \hat{A}^n(m^*) \rightarrow m^* \) where the convergence is in order and topology, where \(H(m^*)(k, k) = h^* \in \mathbf{C}(\mathbf{X}) \).

Proof. First, consider \(m \in \mathbf{M}(\mathbf{X}), \ m > 0, k > 0 \). Under Assumptions 1, 2, and 3(i), as \(\hat{Z}_A \) is strictly in \(x, x \in \mathbf{K} \in \mathbf{R} \). Therefore, \(\hat{Z}_A (x, k; k, m) \) is upper-semicontinuous from the left, and lower semicontinuous from the right in \(x \). By Assumptions 1 and 2, we have additionally \(\lim_{x \rightarrow 0} \hat{Z}_A = +\infty \) and \(\lim_{x \rightarrow f} \hat{Z}_A = -\infty \). Hence, at all such points \((k, m)\), by Guillerme’s coincidence theorem (Guillerme [24], Theorem 3), there exists a root \(\hat{A}(m, k) = x^*(k, k; m) \) such that \(\hat{Z}_A (x^*, k; k, m) = 0 \). Further, as \(\hat{Z}_A \) is strictly increasing in \(x, \hat{A}(m)(k, k) = x^*(k, k; m) \) is unique. Noting \(\hat{A}(m, k) = 0 \) else, \(\hat{A}(m)(k, k) \) is well-defined in \(\mathbf{M}(\mathbf{X}) \).

Next, note that the minimal fixed point of \(\hat{A}(m)(k, k) \) is by definition 0. To establish the only other fixed point of \(\hat{A}(m)(k, k) \) is \(m^*(k, k) \) with \(m^* > 0 \) when \(k > 0 \), using the definition of \(m \), we have:

\[
H(m_0(k, k)) = \frac{1}{w'(c_0(k, k))}.
\]

\[29\]Also, it is important to note that Coleman [10] and others have studied economies with stochastic Markov shocks defined in a discrete shock space. Therefore, obviously, our new uniqueness result extends with a trivial modification to such economies.
By the definition of the operator \(\hat{A}(m)(k,k) \) in equation (??), we have

\[
\frac{1}{\hat{A}m_0(k,k)} = \beta \left\{ \frac{R_\tau(y^1(k,k) - H(\hat{A}m_0(k,k)))}{m_0(y^1(k,k) - H(\hat{A}m_0(k,k)))} \right\}
\]

or, equivalently (from the definition of \(c_0 \)):

\[
\frac{1}{\hat{A}m_0(K,z)} = \beta \{ R_\tau(y(k,k) - H(\hat{A}m_0(k,k)))
\cdot u'(c_0(y(k,k) - H(\hat{A}m_0(k,k)))) \}.
\]

Therefore, by construction, \(Ac_0 \) satisfies:

\[
u'((Ac_0)(k,k)) = \beta \{ R_\tau(y^1(k,k) - Ac_0(k,k))
\cdot u'(c_0(y(k,k) - Ac_0(k,k))) \}.
\]

By the uniqueness of \(\hat{A}m_0 \), it must be that \(1/\hat{A}m_0 = u'(Ac_0) \) (or, equivalently, \(H(\hat{A}m_0) = Ac_0 \)). By induction, for all \(n = 1, 2, \ldots, A^n c_0 = H(\hat{A}^n m_0) \). Hence, a fixed point of \(\hat{A}m(k,k) \) corresponds with a fixed point of \(A(h)(k,k) \).

Next, we prove a fixed point of \(A(h)(k,k) \) corresponds to fixed point of \(\hat{A}m(k,k) \). To see this, consider an \(x \) such that \(Ax = x \), and define \(z = 1/u'(x) \) (or, equivalently \(H(z) = x \)). By definition, \(x \) satisfies:

\[
u'(x(k,k)) = \beta \{ R_\tau(y(k,k) - x(k,k))
\cdot u'(x(y(k,k) - x(k,k)) \} \text{ for all } (k,k).
\]

Substituting the definition of \(y \) into this expression, we have:

\[
\frac{1}{y} = \beta \frac{R_\tau(y(k,k) - H(z(k,k)))}{z(y(k,k) - H(z(k,k)))},
\]

hence, \(z(k,k) \) is a fixed point of \(\hat{A} \). Therefore, \(h^*(k,k) \in \Psi_A \Leftrightarrow m^* \in \Psi_{\hat{A}} \).

As \(\hat{A}m(k,k) \) is pseudo-concave and \(k_0 \)-monotone, it has at most two fixed points, one non-zero (e.g., Coleman [12], Theorem 5). Therefore, the fixed point set of \(\hat{A}(m)(k,k) \) is \(\Psi^{M}_{\hat{A}} = \{0, m^*\} \), with \(m^* = \frac{1}{u'(c^*(k,k))} \) for \(c^*(k,k) > 0 \) when \(k > 0 \). Hence, \(H(m^*(k,k)) = c^*(k,k) \in C \).
Finally, to show uniform convergence of the iterations \(\inf_n \hat{A}^n(m^u) = \lim_n \hat{A}^n(m^u) \to m^* \), first note that for any \(m \in M \), as \(A(m)(k,k) \) is increasing in \(k \), we have the following inequality when \(k_1 \geq k_2 > 0 \):

\[
\frac{1}{A(m)(k_1,k_1)} + \beta \frac{R_e(y(k_2, k_2) - H(\hat{A}(m)(k_2,k_2)))}{m(y(k_2, k_2) - H(\hat{A}(m)(k_2,k_2)), y(k_2, k_2) - H(\hat{A}(m)(k_2,k_2)))} \\
\geq 0
\]

Hence, \(\hat{A}(m)(k,k) \) is such that \(y(k,k) - H(\hat{A}(m)(k,k) \) is increasing in \(k \). Hence, \(\hat{A}(m)(k,k) \) implies \(H(\hat{A}(m)) \in C \) as \(f - H(\hat{A}(m)) \) increasing in \(k \). Hence, each element of a \(\{\hat{A}^n(m^u)(k,k) \) equicontinuous set such that \(H(\hat{A}(m)) \) and \(f - H(\hat{A}(m)) \) has maximal variation \(f'(k) \) at each \(k > 0 \). Therefore, by Dini’s theorem, for each \(k > 0 \), as the limiting function \(m^* \) is continuous, and \(\lim_n \hat{A}^n(m^u) \to m^* \) uniformly when \(k > 0 \). Noting the definition of \(\hat{A}(m) \) when \(k = 0 \), this convergence is uniform on \(X \). Finally, convergence in order is implied by the fact that pointwise and uniform convergence coincide in \(C \), and \(\{\hat{A}^n(m^u)(k,k) \} \) forms a subchain in \(C \) with sup and inf operations for \(\{\hat{A}^n(m^u)(k,k) \} \) equal to pointwise/uniform limits.

Theorem 19 extends the uniqueness result in Coleman [12] In particular, elements \(m \in M(X) \) do not require monotonicity of either investment, nor continuity of either consumption or investment. All that is required is that consumption be monotone (jointly) in \((k,k) \) continuous in its first argument, bound in its second argument.

4.3. A New Method and More Continuous RE

Our uniqueness result in Theorem 19 pertains to the standard operator that has been studied in the literature.\(^{30}\) We now show compute RE in the exact same space \(C \) (where our new uniqueness result in Theorem 19 holds), but using a completely different procedure. What will be interesting is this method will not allow use to check the geometric conditions needed in Theorem 19, hence we will not be able to rule out additional RE. The new method is a simple value iteration procedure,

\(^{30}\)For example, in addition to Coleman [10][11][12], also this operator is used in Greenwood and Huffman [23], Datta, Mirman, and Reflett [14], Morand and Reflett [40], among others.
that produces a \textit{decreasing} operator that is continuous in the space \(C\). As \(C\) is a nonempty, compact, and convex set, existence of some RE will be guaranteed by Schauder’s theorem. Further, its fixed point set will be an antichain.\footnote{i.e., not two fixed points will be ordered.}

The method works directly with the household’s dynamic program. We modify the household problem from before as follows: for a household entering a period in state \(s = (k, K) \in X^*\) in a candidate recursive equilibrium \(h \in C(X)\), when \(h > 0\), construct the unique value function \(V^* : K \times K^\times C(X)\) that satisfies the following parameterized Bellman’s equation:

\[
V^*(k, K; h) = \sup_{x \in \Psi(k, K)} \{u(y(k, K) - x) + \beta V^*(x, h(K))\} \tag{15}
\]

where the household’s feasible correspondence is again simply \(\Psi(k, K) = [0, y(k, K)]\).

Again, using \(y_{x^*} = y - x^*\), we can construct a necessary and sufficient first order characterization of the unique optimal solution \(x^* = x^*(k, K, h)\) is:

\[
u'(y_{x^*}) - \beta u'(y_{x^*})(x^*, h(k)) r(h(k))(1 - \tau(h(k))) = 0 \tag{16}
\]

Now, define a new operator

\[
A^*(h)(k) = x^*(k, k; h) \text{ for } k > 0, \ h \in C, \ h > 0
\]

\[
= y \text{ else.}
\]

That is, define an operator this exactly the HH’s best response map to the aggregate law of motion \(h \in C\) when \(h\) and \(k\) are not zero (and zero, else). We now have the following Lemma:

\textbf{Lemma 20.} \(A^*(h)(k)\) is continuous and antitone on \(C(X)\).

\textbf{Proof.} To be completed. \(\blacksquare\)

Let \(\Psi^C_k\) be the fixed point set of \(A^*(h)(k)\). We now verify the existence of a RE using \(A^*(h)(k)\)

\textbf{Theorem 21.} The set of fixed points for \(A^*(h)(k)\) is nonempty, compact, antichain (hence, chain complete). Further, each fixed point of \(A^*(h)(k)\) is a RE in \(C(X)\)
Proof. As C is a nonempty, compact, and convex set, and $A^*(h)(k)$ is continuous by Lemma 20, the fact that $\Psi_{A^*}^C$ is nonempty and compact follow from Schauder’s theorem. That $\Psi_{A^*}^C$ forms an antichain follows the fact that $A^*(h)$ is decreasing in a complete lattice C (e.g., Dacic [13]), and that $\Psi_{A^*}^C$ is chain complete follows from Amann ([4], Theorem 10).

Now, whenever $h = 0$, $A^*(h)(k)$ is y, and as $h_n \to y$, $r(h_n) \to r(h)$, so $A^*(h)(k) > 0$ (hence, there are no trivial fixed points of $A^*(h)(k)$). Therefore, all the elements of $\Psi_{A^*}^C$ are actually RE. ■

We conclude with a remark about the fixed points of $A^*(h)$ and our uniqueness result in Theorem 19. Using the Euler equation, we have

$$Z(A^*(h), k, h) = u'(y_{A^*(h)}) - \beta u'(y_{A^*(h)})(A^*, h(K)) \cdot r(h(K))(1 - \tau(h(K))) = 0$$

Therefore without further restrictions on F, we cannot checking the standard pseudo-concavity condition; that is, we do not have $A^*(th)(k) > tA^*(h)$ for all $t > 0, h > 0$. Additional, it can be verified we do not sufficient convexity conditions to apply related arguments for unique decreasing operators.

4.4. More Continuous RE

Now we propose a second fixed point procedure that verifies even more continuous RE that lie outside the realm of our uniqueness result. This new result is not inconsistent with Theorem 19, as we prove relative existence outside the domain of bounded functions where the uniqueness argument of Theorem 19 holds (namely, M). As our new operator does not have the requisite concavity and monotonicity properties needed to guarantee the existence of unique fixed points in its domain, we cannot expect RE to be unique. What is interesting is this new procedure also will allow us to build additional RE that are discontinuous (essentially just bounded) in K, for each k.

The new procedure is a "two-step" monotone map method. To define the method, fix a pair of functions $h \in \text{USC}$ and $\hat{h} = \hat{h}(K) \in B^f$, and consider the mapping $Z_B(x, k, k, h, \hat{h})$:

$$Z_B(x, k, k, h, \hat{h}) = -u'(y^2(k, k) - x) + \beta u'(r(h(k, k))x + w(x) - \hat{h}(\hat{h}, \hat{h})) \cdot R_+(x)$$ \hspace{1cm} (17)
where, in the definition of Z_B, we have used the fact that that $g^2(k, k) = r(k)k + w(k) = f(k)$. For fixed $\hat{h} \in B^f$, define a "first-step" nonlinear operator $B^1(h)(k; k; \hat{h})$ in the space USC discussed in Section 3 in Lemma 15 implicitly in the household’s equilibrium Euler equation as follows:

$$B^1(h)(k; k; \hat{h}) = f \text{ if } \nexists x \text{ s.t. } r(h(K))x + w(x) - \hat{h}(\hat{h}(K), \hat{h}(K)) > 0,$$

when $k > 0, h(k) > 0$, $\hat{h} \in B^f$

$$= x^* \text{ for } Z_B(x^*, k, k, h, \hat{h}) = 0, \text{ else, when } k > 0, h(k) > 0, \hat{h} \in B^f$$

$$= 0, \text{ elsewhere.}$$

The following lemma characterizes the properties of the "first step" operator $B^1(h)(k; k, \hat{h}) = B^1(h; \hat{h})$:

Lemma 22. For $\hat{h} = \hat{h}(K) \in B^f$, for each $h \in \text{USC}$, $B^1(h; \hat{h}) \in \text{USC}$. Further, $B^1(h; \hat{h})$ jointly increasing on in $(h, \hat{h}(K)) \in \text{USC} \times B^f$, for each $(k, k) \in X = K \times K$.

Proof: Under Assumptions 1 and 2, Z_B is strictly decreasing in $x \in K \subset R$ with $Z_B \to \infty$ for $x \to 0$ and $Z_B \to -\infty$ as $x \to m^2$. Noting the definition of $B^1(h; \hat{h})$ elsewhere, we conclude $B^1(h; \hat{h})$ is well-defined. Further, noting that Z_B is upper-semicontinuous and increasing in (k, k) (hence, right continuous in k), and Z_B is continuous in x, the root $x^*(k, k, h, \hat{h})$ is right continuous and monotone (hence, upper semicontinuous) in k. Finally, for each $(k, k), k > 0$, we have $Z_B(x, k, k, h_1, \hat{h}_1) \geq Z_B(x, k, k, h_2, \hat{h}_2)$ when $(h_1, \hat{h}_1) \geq (h_2, \hat{h}_2)$. Therefore, $B^1(h_1, \hat{h}_1) \geq B^1(h_2, \hat{h}_2)$ for such k. Noting the definition of $B^1(h, \hat{h})$, elsewhere, $B^1(h, \hat{h})$ is jointly increasing in (h, \hat{h}) on $\text{USC} \times B^f$ for each (k, k).

Let $\Psi^{\text{USC}}_{B^f}(\hat{h}) \subset \text{USC}$ be the fixed point correspondence for the operator $B^1(h; \hat{h})$ at $\hat{h} \in B^f$. We now prove an important lemma concerning the fixed point set of the "first-step" of our modified policy iteration procedure32:

32We should be very clear: Coleman [10][12] and Mirman, Morand, and Reffett [35] are explicit when noting precisely how to interpret their uniqueness results; what is new, here, is (i) a new method for computing recursive equilibrium outside the side of function for which they claim uniqueness, (ii) an argument that uniqueness results, at best, only can be claimed relative to operators, not sets of recursive equilibrium.
Lemma 23. The fixed point set $\Psi^{USC}_{B^f} : B^f \rightarrow 2^{USC_\emptyset}$ is a nonempty complete lattice-valued correspondence, with $\Psi^{USC}_{B^f}(\hat{h})$ ascending in Veinott strong set order on B^f. Further, for each fixed point $h^* \in \Psi^{USC}_{B^f}(\hat{h})$, $h^* \in C(X)$. Additionally, for fixed $\hat{h} \in B^f$, the iterations $\lim_n B^{1n}(0; \hat{h}) \rightarrow \inf_n B^{1n}(0; \hat{h}) = h^*(\hat{h}) = \wedge \Psi^{USC}_{B^f}(\hat{h}) \in C$, such that $h^*(\hat{h}) > 0$ and $f(k) - h^*(\hat{h}) > 0$ when $k > 0$, where the convergence is uniform. Finally, the selection $B^2(\hat{h}) = \wedge \Psi^{USC}_{B^f}(\hat{h})$ is an increasing selection of $\Psi^{USC}_{B^f}(\hat{h})$.

Proof. As $B^1(h; \hat{h}) \in USC(X)$, isotone in h, each (k, k, \hat{h}), and USC(X) as complete lattice, by Tarski’s theorem, $\Psi^{USC}_{B^f}(\hat{h})$ is a nonempty complete lattice. Further, that the fixed point correspondence $\Psi^{USC}_{B^f}(\hat{h})$ is ascending in Veinott’s strong set order follows from a theorem in Veinott ([58], Theorem 14, Chapter 4).33

Let $h^*(\hat{h}) \in \Psi^{USC}_{B^f}(\hat{h})$. By the definition of $B^1(h; \hat{h})$, when $k > 0$,

$$h^*(\hat{h}) = B^1(h^*; \hat{h}) = \inf \{ x^*(k, k, h^*, \hat{h}, f) \}$$

where $Z_B(x^*(k, k, \hat{h}, h, \hat{h}), k, k, \hat{h}) = 0$. Therefore, when $k_1 \geq k_2 > 0$, using the notation $h_k^*(\hat{h}) = h^*(k, k, \hat{h})$, and $x_k^*(\hat{h}) = x^*(k, k, h^*, \hat{h})$, the following:

$$u'(y^2(k, k) - x_k^*(\hat{h})) - \beta u'(r(h_{k_1}^*(\hat{h})h_{k_1}^*(\hat{h}) + w(h_{k_1}^*(\hat{h}))) - \hat{h}(\hat{h}, \hat{h}) \cdot R_\tau(h_{k_1}^*(\hat{h})) \geq$$

$$u'(y^2(k, k) - h_{k_2}^*(\hat{h})) - \beta u'(f(h_{k_2}^*(\hat{h}))) - \hat{h}(\hat{h}, \hat{h}) \cdot R_\tau(h_{k_2}^*(\hat{h})) = 0$$

as $r(h^*)h^* + w(h^*) = f(h^*)$ by the definition of income process y^2, and $h_k^*(\hat{h})$ is increasing in k.

33See also Topkis ([56], Theorem 2.5.2).
Therefore, if $B^1(h^*(\hat{h});\hat{h}) = x_k^*(\hat{h})$, we have $B^1(h^*(\hat{h});\hat{h})$ such that $u'(y^2(k,k) - h_k^*(\hat{h}))$ is decreasing in k. Therefore, $y^2(k,k) - h_k^*(\hat{h})$ must be increasing in k. Hence, $B^1(h^*(\hat{h});\hat{h}) \in C$. Further, if $k > 0$, then $B^1(h^*(\hat{h});\hat{h}) = f$, hence we trivially have $y^2 - B^1(h^*(\hat{h});\hat{h})$ increasing in k. Therefore, when $k > 0$, for $h^* \in USC(X) \Rightarrow B^1(h^*(\hat{h});\hat{h}) \in C(X)$. Elsewhere, $B^1(h^*(\hat{h});\hat{h}) = 0 \in C$. Therefore, for all $k \in K$, $h_k^*(\hat{h}) \in USC \Rightarrow h_k^*(\hat{h}) = B^1(h^*(\hat{h});\hat{h}) \in C(X)$. Finally, as the subset $C(X)$ is compact in $USC(X)$, we have any fixed point $h_k^*(\hat{h}) \in C$. To conclude the proof, as for each $\hat{h} = \hat{h} (K,K)$, the iterations $\lim_{n} B^1(0;\hat{h}) \rightarrow h_k^*(\hat{h}) = \land \Psi_{USC}^B(\hat{h})$ form a monotone sequence of continuous function with the limit h^* continuous, hence, by Dini’s theorem, the convergence is uniform.

We next construct a new operator from the fixed point correspondence of our "first-step" operator based upon the selection $h_k^*(\hat{h}(K,K))$ when $k = K$ as follows

$$B^2(h)(k,k) = \begin{cases} h_k^*(\hat{h}(k)), & h \in M^A, h < f, k > 0 \\ f, & h = f, k > 0 \\ 0, & \text{else} \end{cases}$$

In Theorem 24, we now show the existence of additional recursive equilibrium in $M^A(X)$. Further, we show that when $B^2(h)(k,k)$ is restricted to C, $B^2(h)(k,k)$ has a (unique) positive fixed point in C (hence, by Theorem 19, Coleman’s policy iteration procedure is robust to alternative fixed point procedures.

Let $\Psi_{\hat{B}^2}^{M^A}$ be the set of fixed points of $B^2(h)(x)$. Further, define the set of functions:

$$B^f_i(X) = \{h| \text{for fixed } \hat{h}(k) \in B^f, h_k^*(\hat{h}(k)) \in M^A\}$$

Notice the elements of $h_k^*(\hat{h}(k)) \in B^*(K)$ are not continuous on K, as $\hat{h} \in B^f$. It can easily be verified that $B^*(X)$ is chain complete. We have the following:

Theorem 24. The operator $B^2 : M^A \rightarrow M^A$ is isotone on M^A. Therefore, its fixed points $\Psi_{\hat{B}^2}^{M^A}$ form a chain complete set, with $\land \Psi_{\hat{B}^2}^{M^A} \in M^A$ a continuous recursive equilibrium, with $\land \Psi_{\hat{B}^2}^{M^A} \notin C$. Further, when the operator $B^2(h)(k,k)$ is restricted to C, $\Psi_{\hat{B}^2}^{M^A} = \{0, h^*\} \subset C$. Finally, for $\hat{h} \in B^f$, $B^2 : B^* \rightarrow B^*$ and is isotone, so the set of fixed points $\Psi_{\hat{B}^2}^{B^*}$ is chain complete, and $\land \Psi_{\hat{B}^2}^{B^*}$ a bounded RE.
\textbf{Proof.} Proof: Let }h \in \mathbf{M}^A\text{, with }h < f, k > 0\text{. Let }k_1, k_2 > 0\text{. As }h \in \mathbf{M}^A\text{, and }B^2\text{ is increasing in }k\text{, we have }

\begin{align*}
|\beta u'(f(B^2(k_1, k_1) - h(h(k_1, k_1), h(k_1, k_1))) \cdot R_{\tau}(B^2(k_1, k_1) - \\
\beta u'(f(B^2(k_2, k_2) - h(h(k_2, k_2), h(k_2, k_2))) \cdot R_{\tau}(B^2(k_2, k_2)) | \geq 0
\end{align*}

Hence, }B^2(k, k)\text{ must be such that }

\begin{align*}
|u'(y^2(k_1, k_1) - B^2(k_1, k_1)) - u'(y^2(k_2, k_2) - B^2(k_2, k_2)) |}
\end{align*}

Using the definition of the inverse marginal utility in (4.2), using }c^m \equiv y^1-B^2\text{, defining }m_{B^3}\text{ to be the implied inverse marginal utility at }c^m\text{, this implies }

\begin{align*}
|m_{B^2}(k_1, k_1) - m_{B^2}(k_2, k_2)| \leq \frac{1}{u''(m^a)}
\end{align*}

Noting the definition of }B^2\text{ elsewhere, }B^2(k, k) \in \mathbf{M}^4\text{.}

To see }B^2(h)\text{ is isotone, note that when }h' \geq h\text{, the second term of }Z_B\text{ rises (noting that the least fixed of }B^1(h; h), B^2(h)\text{, rises by Veinott’s fixed point comparatives statics result, e.g., Topkis ([56], Theorem 2.5.2). Therefore, noting the definition of }B^2(h)\text{ elsewhere, }B^2(h)\text{ is isotone in }M^4\text{.}

As }M^4\text{ is chain complete, by Markowsky’s fixed point theorem ([30], Theorem 9), the fixed point set for }B^2, \Psi^{M^A}_{B^2}\text{, is chain complete.}

To complete the proof of the first part of the Theorem, appealing to the Inada conditions in Assumptions 1 and 2, the greatest fixed point has }\wedge \Psi^{M^A}_{B^2} > 0\text{ when }m > 0\text{, and }k > 0\text{. By the local Lipschitz continuity }\wedge \Psi^{M^A}_{B^2}\text{ near each }k\text{, the implied fixed points for consumption and investment at }\wedge \Psi^{M^A}_{B^2}\text{ near each }k\text{ are Locally Lipschitz continuous. Under Assumptions 1, 2, 3(i), all the primitive data that defines }Z_B\text{ is locally Lipschitz continuous. Further as }m \in \mathbf{M}^A, m \text{ is locally Lipschitz. As it is known in our setting, local Lipschitz structure is closed under composition},^{34}\text{ we have }Z_B\text{ locally Lipschitz in }k\text{ at }\wedge \Psi^{M^A}_{B^2}\text{. As under Assumption 1, for any element of Clarke partial }\partial_m Z, \text{ the element does not vanish (as, for example, the Clarke gradient of the first term does not vanish), by Clarke’s implicit function theorem, as }\wedge \Psi^{M^A}_{B^2} = B^3(h^*) = B^2(\Lambda(h^*, h^*)(k, k) = h^*_k(h)\text{ is just the root of }Z_B, \text{ when }\wedge \Psi^{M^A}_{B^2} > 0, k > 0, \wedge \Psi^{M^A}_{B^2}(k, k)\text{ is locally Lipschitz near any such }k\text{. Noting the definition of }\wedge \Psi^{M^A}_{B^2}\text{ elsewhere, }\wedge \Psi^{M^A}_{B^2}(k, k)\text{ is continuous.}

^{34}\text{If }f : I_1 \to I_2, \text{ and }g : I_2 \to \mathbf{R}, f \text{ and }g \text{ Lipschitz any }I_1 \text{ and }I_2 \text{ compact in } (0, k^a], \text{ then }g \circ f \text{ is Lipschitz on }I_1.
Finally, the continuity of equilibrium decision rules guarantee we evaluated the pair of conditions (11) and (12) in the definition of a recursive equilibrium, and verify they are satisfied with $x^*(k, k; \wedge \Psi_{B^2})$ being the optimal solution at $V^*(k, k, \wedge \Psi_{B^2}^{M^A})$.

To see that when $h \in C$, $\wedge \Psi_{B^2}^{M^A} = h^* \in C$, notice first that for such h, $B^2(h)$ in Z_{B^2} in

$$u'(y^2(k_1, k_1) - B^2(k_1, k_1))$$
$$-\beta u'(f(B^3(h) - h(h(k_1, k_1), h(k_1, k_1))) \cdot R^r(B^2(k_1, k_1))$$

is now increasing in (k, k) such that $f - B^2$ is increasing in (k, k). Therefore, $B^2 \in C$, additionally. Therefore, noting that in Lemma 15, C is a complete lattice, as B^2 is isotone, the fixed point set $\Psi_{B^2} \subset C$. Therefore, $\wedge \Psi_{B^2}^{M^A} \in C$. It can easily be verified that appealing to obvious modifications of the arguments in Theorem 19, the fixed points of $B^2(h)$ for $h \in C$ can be related one-to-one with the fixed points of $\hat{A}(m)(k, k)$ defined in theorem in M. Hence, $\Psi_{B^2}^{M^A} = \{0, h^*\}$ as in Proposition 17.

To complete the proof, simply note that $B^2(h)$ on B^* self map follows from the fact that for each \hat{h}, $h^*_\hat{h} \in M^A$. Isotonicity follows from the fixed point comparative statics result in Theorem 23. Therefore, as B^* is chain complete, by Markowsky’s theorem, $\Psi_{B^2}^{B^*}$ is chain complete. Further, it can easily be verified $B^2(h)$ is order continuous on B^*, and \exists a lower bound $h^b \in B^f$, $h^b \notin C$ sufficiently close to 0, such that $h^b \leq B^2(h^b)$. Therefore, the the Tarski-Kantorovich theorem, the iterations $\sup_n B^2_n(h^b)(k, k) \to \wedge \Psi_{B^2}^{B^*}$. As $B^2(h)$ corresponds with the root of first order condition for the HH in equilibrium, given the Inada condition, we must have $\wedge \Psi_{B^2}^{B^*}(k, k) > 0$ when $k > 0$, so $\wedge \Psi_{B^2}^{B^*}$ is bounded RE, continuous only in its first argument.

5. RE with Regressive Taxes

We finally consider the existence of recursive equilibrium in the example studied in Santos [54] for case of regressive income taxes. For this case, we will again develop a two-step modification of Coleman’s policy iteration procedure to establish the existence of both an very narrow set of RE (i.e., (locally Lipschitz) continuous isotone recursive equilibrium), and an very large set for RE (i.e., bounded RE, locally Lipschitz continuous in k, for each $K = k$). So in the latter case, the RE has
essentially no structural properties in K along the path $k = K$. The of this section is to make a very simple point about RE in nonoptimal economies: in an RE, there are basically no restrictions places on solutions to RE functional equation in "big K". This is because of the "k-K" structure of the RE functional equation. This allows us to (in effect) solve the RE functional equation "on sections" of the state space X, with the first step verifying the required properties for an RE properties of an RE in "little k" (holding "big K" constant), and in the second step, just making sure the solution is consistent with making the Euler equation hold given for the RE function for all "big K". This latter step (as we shall see) places very little restrictions on the solutions.

5.1. Two Step Monotone Map Methods

To see how this two step procedure works, lets first compute locally Lipschitz continuous RE.\footnote{Note, Santos [54] claims nonexistence of continuous RE in the class of models we study presently. We show this is not not the case. Actually, what Santo's verifys (correctly) is there are not continuous RE on a state space of k (i.e., a one dimensional state space). We verify continuous RE exist on $x = (k, k)$, which is not the same (so in principle, our claim does not contradict the claim in Santos).

But a few remarks. First, in addition to continuity of RE, we are able to verify isotone RE for investment in this example. That contradicts the numerical claims from the computations reported in Feng, et. al. [21] that at some unstable steady state for this example, there is a spiral sink. Also, it should be noted that the Grobman-Hartman theorem does not apply in this problem (as RE dynamics are not necessarily smooth, only locally Lipschitz). Hence, some other method has to be used to verify the stability claims in Santos [54]. See Reflett [48] for discussion.} To do this, consider the following modification of Coleman's procedure: for $h \in C(X)$, and $\hat{h}(K, K) \in C(X)$, define the mapping $Z_{A^S}(x, k, k, h, \hat{h})$ as follows

$$ Z_{A^S}(x, k, k, h, \hat{h}) = u'(y^1(k, k) - x) - \beta u'(y^1_h)(x, x) r(x)(1 - \tau(\hat{h}(K, K))) $$

where, under Assumption 3(ii), the income tax $\tau(K)$ is now assumed to be decreasing and Lipschitzian in its argument. Fixing both h and \hat{h}, we can define a nonlinear operator $A^S(h)(k, k; \hat{h}) = A^S(h, \hat{h})$ implicitly in $Z_{A^S}(x, k, k, h, \hat{h})$ at

$$ Z_{A^S}(x, k, k, h, \hat{h}) = u'(y^1(k, k) - x) - \beta u'(y^1_h)(x, x) r(x)(1 - \tau(\hat{h}(K, K))) $$

$\footnote{Note, Santos [54] claims nonexistence of continuous RE in the class of models we study presently. We show this is not not the case. Actually, what Santo's verifys (correctly) is there are not continuous RE on a state space of k (i.e., a one dimensional state space). We verify continuous RE exist on $x = (k, k)$, which is not the same (so in principle, our claim does not contradict the claim in Santos).

But a few remarks. First, in addition to continuity of RE, we are able to verify isotone RE for investment in this example. That contradicts the numerical claims from the computations reported in Feng, et. al. [21] that at some unstable steady state for this example, there is a spiral sink. Also, it should be noted that the Grobman-Hartman theorem does not apply in this problem (as RE dynamics are not necessarily smooth, only locally Lipschitz). Hence, some other method has to be used to verify the stability claims in Santos [54]. See Reflett [48] for discussion.
\(\hat{h} = \hat{h}(K, K) \) as follows:

\[
A^S(h, \hat{h}) = x^* \text{ s.t. } Z_A(x^*(k, k, h, \hat{h}(K)), k, k, h, \hat{h}) = 0,
\]

\[h > 0, k > 0, \text{ all } K \]

= 0 else.

For fixed \((h, \hat{h}) \in C \times C\), we first prove some basic properties of the operator \(A^S(h; \hat{h})\):

Lemma 25. For \((h, \hat{h}) \in C \times C\), at \(\hat{h} = \hat{h}(K, K) \), \(A^S(h; \hat{h}) \in C\). Further, when \(k > 0, k = K \), \(A^*(h)(k, k, \hat{h}(k, k))\) is locally Lipschitz.

Proof. Proof: For \(k = 0 \), and \((h, \hat{h}) \in C \times C\), the operator is well-defined. Fix \(\hat{h}(K) \in C, k > 0 \). For such points, the fact that the operator \(A^S(h)(k, k; \hat{h}(K))\) is well-defined, isotone, and continuous in the uniform topology in \(h \) follows from Coleman ([10], Proposition 4). Further, if \(K^* = (0, k^u] \), under Assumptions 1, 2, 3(ii)-(iii), noting local Lipschitz continuity is pointwise closed under composition in this context, for \((h, \hat{h}) \in C \times C\), the mapping \(Z_A(x, k, k, h, \hat{h})\) is \((x, k)\) jointly locally Lipschitz on \(K^* \times K^* \). Further, under Assumptions 1 and 2, noting \(y^t(k, k) = f(k) \), as each partial Clarke gradient for \(Z_A\) in \(x \) does not vanish, i.e., the Clarke generalized gradient \(\partial_x Z_A \) is of full rank, by Clarke’s Implicit Function Theorem, \(x^*(k, k, h, \hat{h}(k, k)), k, k, h, \hat{h}(k, k)) = A^S(h)(k, k; \hat{h}(k))\) is locally Lipschitz near each \(k > 0 \).

We now study the monotonicity of the operator \(A^S(h)(k, k; \hat{h}(k))\). In particular, we prove the mapping \(A^S(h)(k, k; \hat{h}(K))\) is jointly isotone on \(C \times C\):

Lemma 26. \(A^S(h)(k, k; \hat{h}(k))\) increasing jointly in \((h, \hat{h})\).

\(^{36}\)By a theorem in Matouškova (e.g., [32], Theorem 2.4), as \(A^S(h)(k, k, \hat{h}(k, k))\) is Lipschitz on each closed \(I \subset (0, k^u] \), there exists a Lipschitz extension of \(A^S \) onto \([0, k^u]\) with the same Lipschitz module. As we really only need this property in equilibrium, we defer this issue to the existence of equilibrium result in Theorem 25 below.
Proof. When $h > 0$, $k > 0$, as $Z_A(x,k,h,h')$ is strictly increasing in x, and decreasing jointly in $(h,h') \in C \times C$, $A^S(h)(k,k,h')$ is jointly isotone for such (h,h'), when $k > 0$. Noting the definition of $A^S(h)(k,k;h'(K))$ elsewhere, $A^S(h)(k,k;h'(K))$ is jointly isotone on $C \times C$. ■

Let $\Psi_{A^S}^C(\hat{h})(k,k)$ be the set of fixed points of $A^S(h)(k,k;\hat{h}(K))$ at $\hat{h}(K) \in C(X)$ when $k = K$. We have the following result:

Lemma 27. $\Psi_{A^S}^C(\hat{h})(k,k)$ is a nonempty complete lattice for each $\hat{h} \in C(X)$. Furthermore, $B^S(\hat{h}) = \wedge_{\hat{h}} \Psi_{A^S}^C(\hat{h})(k,k)$ is an increasing selection.

Proof. As $A^S(h)(k,k;\hat{h}(K))$ is isotone in h on C, each $\in C$, the fixed point correspondence $\Psi_{A^S}^C(\hat{h})(k,k)$ is a nonempty complete lattice follows by Tarski’s theorem ([55], Theorem 1). By Veinott’s fixed point comparative statics result in the appendix (e.g., Veinott [58], Theorem 14, Chapter 4), $\Psi_{A^S}^C(\hat{h})(k,k)$ is strong set order isotone jointly in the parameter $\hat{h}(k,k)$ with all isotone selections forming a complete lattice. That $\wedge_{\hat{h}} \Psi_{A^S}^C(\hat{h})(k,k)$ is an increasing selection follows from the fact that as $\Psi_{A^S}^C(\hat{h})(k,k)$ is also complete lattice-valued that is ascending in Veinott’s strong set order, hence, $\wedge_{\hat{h}} \Psi_{A^S}^C(\hat{h})(k,k)$ is well-defined an is the least increasing selection for investment. ■

Let $\Psi_{B^S}^C$ be the fixed point set of the operator $B^S : C \rightarrow C$ define in Lemma 27. We now prove the main theorem of this section, namely, that our modification of Coleman’s policy iteration algorithm converges to a greatest continuous recursive equilibrium:

Theorem 28. Under Assumptions 1, 2, and 3(ii)-(iii), there exists complete lattice $\Psi_{B^S}^C$ of fixed points of $B^S(h)$ in $C(X)$. Furthermore, the iterations $\lim_n B^{S_n}(0) \rightarrow h^* = \wedge \Psi_{B^S}^C$. Finally, h^* a recursive equilibrium that is continuous, locally Lipschitz when $k > 0$, and convergence of $\lim_n \wedge B^{S_n}(f) \rightarrow h^*$ is uniform on X.

Proof. Proof: As $B^S(h)$ is isotone in C, C a complete lattice, the set $\Psi_{B^S}^C$ is a nonempty complete lattice by Tarski’s theorem. Further, by the isotonicity of
As the limiting fixed point $A^S(h^*(k, k), k, k, h^*(k, k))$ is defined implicitly in Z_{AS}, when $k > 0$, from Lemma 25, the fixed point $h^*(k, k) = A^S(h^*(k, k), k, k, h^*(k, k))$ is locally Lipschitz when $k > 0$. Finally, for $k \in [0, k^u]$, let $d_1(k) = 0$, and $d_2(k) = f$. Notice, $d_1 \leq h^* \leq d_2$ for all $k \in (0, k^u]$. Hence, this holds for all closed subsets $I \subset (0, k^u]$. Under Assumption 2, both d_1 and d_2 are pointwise bounded, such that $\exists \epsilon > 0$, such that for all $k_1, k_2, d_1 - d_2 \leq \epsilon |k_1 - k_2|$ for all $(k_1, k_2) \in [0, k^u] \times [0, k^u]$. Therefore, by a theorem in Matouškova ([32], Theorem 2.2), $h^*(k, k)$ is a continuous extension onto $[0, k^u]$, with $h^*(k, k)$ at $k = 0$. Further, as $\{B^{Sn}(0)\}_n$ is an increasing sequence of continuous functions converging pointwise to a continuous function $h^* = \Psi_{BS}$. Hence, by Dini theorem, this convergence is uniform (also, see Amann [3], Theorem 6.1).

A few remarks. First, in the above result, there is no claim of uniqueness of locally Lipschitz RE. Actually, a simple inspection of the RE functional equation parameterized with our two step method reveals there is very little geometric structure for the second step (i.e., the first step does generate unique RE for each \hat{h}, but because of the implicit nature of the second step operator in the RE functional equation, aside from monotonicity, very little else can be established.

Second, the result does indeed verify the existence of continuous RE in the Santos example. Also, it is easily verified that the RE investment decision rule is isotope in (k, k).

Finally, it important to note that Santos ([54], Section 3.2) never establishes the existence recursive equilibrium in his example; rather, he only considers the nonexistence of continuous recursive equilibrium on a state space of K. As we shall show in the next section, discontinuous solutions to the equilibrium Euler equation of the household’s can be constructed. They are not RE. Further, It bears mentioning that in Santo’s proof, to character the local properties of a continuous RE near a particular unstable steady state, it appears he calculates eigenvalues needed for this characterization applying the Grobmann-Hartmann theorem. Indeed, it is precisely this application that obtains the necessary contradiction with the continuity of RE on an open manifold near this "spiral sink". It is important to remember that the Grobmann-Hartman theorem in his context would assume the local RE decision rule is a smooth dynamical systems mapping in C^1–manifold.
5.2. Existing Correspondence-based Continuation Methods

We finally consider a correspondence-based continuation methods for constructing recursive equilibrium. Our main focus in this section will be on economies with a state contingent regressive taxes (as this case has been studied extensively using correspondence-based continuation methods in the work of Santos [54], Miao and Santos [34] and Feng, et. al. [21]). In the Miao-Santos correspondence-based continuation method, instead of parameterizing the continuation structure of the economy in the previous section with functions, we use correspondences, say $G(x) \in \mathbf{G}(X)$, where $\mathbf{G}(X)$ is a complete lattice of correspondences under the set inclusion partial order. We will define a mapping in \mathbf{G} essentially as follows: (i) given an element $G(x) \in \mathbf{G}$, we can solve the first order conditions for all solutions to the household’s Euler equation that are consistent with this implied continuation structure for the economy; then, (ii) we use these solutions to define mapping, say $T(G)(x) \in \mathbf{G}(X)$, that returns the updated values of these continuation variables today. We then compute fixed points of this "set to set" mapping.

It will turn out that for the regressive tax case, the critical complication for the correspondence-based approach is the fact that under Assumptions 1 and 3(ii), the function

$$\Phi(x, k) = \frac{u'(y^1(k, k) - x)}{(1 - \tau)(x)}$$

does not exhibit any particular pattern of monotone comparative statics in the pair (x, k). Hence, for each (k, k), the set of solutions to a modified version of our equation Z_{As} in equation (5.1) continuing to an element $g \in G(k', k')$ will be correspondence $T(G)(x)$ that is simply nonempty, upper semicontinuous correspondence and preserves compactness. Unfortunately, such a correspondence will not admit continuous selection in its first argument, in general, and, hence generalized Markovian decision rules, say $k' = x^*(k, k, g^*(k, k))$, cannot be guaranteed to be optimal solutions to a strictly concave dynamic programming problem for the household in its individual state k in equation (11). This will be core issue with generating situation where the Miao-Santos procedure fails guarantee the existence recursive equilibrium selections without additional arguments.

5.2.1. The Miao-Santos Procedure

To define the Miao-Santos operator $T(G)(x)$, consider for a subset $D \subset R$, the collection of subsets $D' = 2^D$, where D is compact. It is known that the pair
(D', \succeq) is a continuous lattice (hence, a complete lattice) under the set inclusion partial order. Endow (D', \succeq) with the Hausdorff metric. Under this metric, D' is also a complete metric space. Define the following set of correspondences $G \subset D'$, defined as follows:

\[
G = \{ G(x) | G : X \to D', \ G(x) \subset G^u(x) = D \ \forall \ x = (k, k) \in X, \ G(x) \ \text{a nonempty, compact-valued, and upper-semicontinuous in} \ x \}
\]

When defining G, we require a top element, say G^u. When applying the Miao-Santos procedure to our economies with Inada conditions, this element can often be challenging to construct without prior knowledge of the actual recursive equilibrium. For the moment, we shall assume that for our economy with a regressive tax, such a greatest element $G^u = D$ can be specified for all (k, k) such that $k > 0$.

37 It is not clear often how to do this (for example, in our economy). In Miao and Santos [34] and Feng et. al. [21], the avoid this question by endowing agents with an interior income point. For even simple models like ours, no such element exists.

Consider an operator $T(G)(k, k) \subset G$ mapping in spaces of correspondences defined implicitly in the equilibrium version of the household’s Euler equation (12) as follows:

\[
T(G)(k, k) = \{ g' | \exists x^* \ \text{st} \ \frac{u'(y^1 - x^*)}{(1 - \tau)(x^*)} - \beta g, \ g \in G(k', k') \in G \}
\]

\[
k' = x^*, \ g' = u'(y^1 - x^*)f'(k), \ x^*(k, k, g) \in X^*(k, k; g), \ y^1 = y^1(k, k)\}
\]

where $x^* = x^*(k, k; g) \in X^*(k, k; g)$ is an implied selection for investment decision in equilibrium defined on the expanded state space that includes the "shadow value" of household capital holdings in equilibrium, namely g. That is, when $g \in G(k', k')$ is an equilibrium envelope in a recursive equilibrium tomorrow, today’s decision rules for investment in equilibrium will be selections from $X^*(k, k; g)$. Therefore, a continuation g will induce an auxiliary state variable in the decision rules for equilibrium policies $k' = x^*(k, k)$. This is precisely the "generalized Markov equilibrium" structure that is studied in the literature (e.g., see additionally for example Phelan and Stacchetti [46] and Kubler and Schmedders [26]).

As shall be mentioned in a moment (e.g., in Proposition 29 below), it is known that the operator $T(G)(x)$ maps the space of correspondences G into itself, and is isotone under the set inclusion order. Hence, $T(G)(x)$ has a complete lattice.
of fixed points by Tarski’s theorem (ordered under set inclusion). Further, under Assumptions 1 and 3(ii) on the Lipschitz structure of \(u' \) and \(\tau \), as the mapping \(Z_T \) defined as

\[
Z_T(x, k, k, g) = \frac{u'(y^1 - x)}{(1 - \tau)(x)} - \beta g
\]

is jointly continuous in all its arguments, by a standard argument, \(T(G)(k, k) \) is (pointwise) Hausdorff continuous. This implies \(T(G)(k, k) \) is order continuous on \(G \). Therefore, by the Tarski-Kantorovich theorem (e.g., Dugundji and Granas [19], Theorem 4.2), \(T(G)(k, k) \) will have a greatest fixed point in the down-set \(\{ G | G \in G, G \leq G^u = D \} \) under set inclusion that is computed as

\[
\inf_n T^n(G^u)(k, k) \to G^*(k, k)
\]

Finally, given "self-generation" arguments first discussed in Abreu, Pearce, and Stacchetti (e.g., [1][2]), it turns out that our interest is only on this greatest fixed point \(G^*(x) \).

Given the existence of such an upper bound \(G^u = D \in G \), Miao and Santos [34] and Reffett [48] have proven a number of results concerning iterative methods based upon the correspondence-based operator \(T(G)(k, k) \). We state the key facts in the next proposition proved in Miao and Santos [34]:

Proposition 29. (Miao and Santos [34]; Feng et. al. [21]). For each \((k, k) \in X, k > 0, T(G(k, k)) \in G \) is isotone on \(G \) under set inclusion. Further, if \(\exists G^u \in G \) such that \(G^u(k, k) \leq T(G^u)(k, k) \) under set inclusion, for all \((k, k) \), then, the iterations \(\lim_n T^n(G^u)(k, k) \to \inf_n T^n(G^u)(k, k)G^*(k, k) \) (where the inf is with respect to set inclusion), and \(G^*(k, k)=G^* \) the greatest fixed point of \(T(G)(k, k) \), where the convergence both in the Hausdorff.

Therefore, the question of existence of recursive equilibrium is now reduced to guaranteeing the existence of selection \(g^*(k, k) \in G^*(x) \) such that the generalized Markov equilibrium decision rule \(k' = x^*(k, k, g^*) \in X^*(k, k, g^*) \) is a recursive equilibrium per our definition in Section 2.

A few remarks on Proposition 29. First, and most importantly, Proposition 29 is not sufficient to establish the existence of a recursive equilibrium. That is,

\[38\] See Reffett [48] for discussion.
although $T(G)(k, k)$ maps G into itself, $G^* \in G$ does not guarantee the existence of selection $g^*(k, k) \in G^*(k, k)$, such that the implied decision rule for investment, for example, namely $k' = a^*_g = a^*_g(k, k, g^*(k, k)) = x^*(k, k, g^*(k, k))$ satisfies the following two necessary and sufficient conditions for the existence of a recursive equilibrium when $k > 0$:

$$V^*(k, k; g^*) = \sup_{y \in \Psi_y(k, k)} \{u(y^1(k, k) - a^*_g) + \beta V^*(a^*_g, g^*)\}$$

$$u'(y^1(k, k) - a^*_g) - \beta u'(y^1_g(a^*_g, a^*_g)) r(a^*_g)(1 - \tau(a^*_g)) = 0$$

Unfortunately, the nonexistence of a selection $g^*(k, k) \in G^*(k, k)$ continuous its first argument (e.g., Aubin and Frankowska [6], Example, p. 358) implies that Proposition 29 does not verify the existence of a recursive equilibrium.

Second, it should also be mentioned that in studying the structure of the household’s first order necessary and sufficient conditions in (12), for $a^*_g(k, k, g^*(k, k))$ to be continuous in its first argument, $y^1_g(k', k')$ must be continuous in its second argument. One sufficient condition guarantee this continuity condition of y^1_g in its second argument is to have the recursive equilibrium $a^*_g(k, k, g^*(k, k))$ be jointly continuous in (k, k). Hence, it is not clear what class of discontinuous recursive equilibrium are possible given the restrictions imposed by equations (11) and (12) along equilibrium trajectories.

Third, the topological convergence result as proved in Miao and Santos [34] can be shown to imply the convergence of $T(G)(k, k)$ in an important order topology (namely, the Scott topology) in the context of the set inclusion partial. In particular, it implies the operator $T(G)(k, k)$ is Scott-continuous on G. In Refsett [48], this fact is important when addressing the question of the existence of continuous models of computation for recursive equilibrium in dynamic economies like the one considered in this paper. One problem that is noted in that paper is that operators such $T(G)(k, k)$ that map in domains of correspondences that are valued in simple Euclidean spaces, as opposed to function spaces, are not Scott continuous relative to the set of recursive equilibrium selections in $G^*(k, k)$; rather, they are only Scott-continuous relative to greatest fixed point of $T(G)(x)$ in G. This implies in our context, the Miao-Santos procedure (even in our context of Cass growth with a regressive tax) is not constructive. As a key motivation for correspondence-based methods is numerical, such a loss of continuity per the set of recursive equilibrium poses a significant challenge to rigorously operationalizing the Miao-Santos procedure for the construction of both approximate and actual
recursive equilibrium solutions.\footnote{For example, in Feng et. al. \cite{21}, a discretized version of the step function approximation scheme for correspondences based upon Beer \cite{21}, has been proposed. That approximation scheme, although novel for constructing set approximations for upper semicontinuous correspondences, is silent on rigorously constructing approximate solutions for appropriately continuous selections $g^*(k, k) \in G^*(k, k)$ that are actually recursive equilibrium.}

5.2.2. Not all Selections in G^* are Recursive Equilibrium

We now construct selections in the Miao-Santos equilibrium correspondence $G^*(k, k)$ in Proposition 29 that do not induce recursive equilibrium decision rules for investment. To do this, we construct a new operator $T^B(h)(k)$ that studies solutions to the household’s Euler equation in the regressive tax case that are (i) a subset of the bounded feasible decision rules B^f studied in Lemma 15, but are (ii) not sufficiently continuous to be consistent with being an optimal solution to the dynamic program in equation (11). Such solutions that are not RE can easily be constructed.

To do this, let $h \in B^f$. Then when $h > 0, k > 0$, consider the mapping

$$Z_{T^B}(x, k, h) = u'(f(k) - x) - \beta u'(r(h)x + w(x) - h(h(k))r(x)(1 - \tau(h(k)))$$

Define the nonlinear operator $T^B(h)(k)$ mapping in B^f as follows

$$T^B(h)(k) = f \text{ if } \nexists x \text{ s.t. } r(h(k))x + w(x) - h(h(k)) > 0,$$

when $k > 0, h(k) > 0$, $\hat{h} \in B^f$

$$= x^*(k, h) \text{ for } Z_B(x^*(k, h), k, h) = 0, \text{ else when } k > 0, h(k) > 0, \hat{h} \in B^f$$

$$= 0, \text{ else.}$$

We mention the following Lemma that characterizes the operator $T^B(h)(k)$:

Lemma 30. The operator $T^B(h)(k)$ is well-defined with $T^B(h)(k) \in B^f$. Further, $T^B(h)(k)$ is isotone on B^f. Therefore, the fixed point set Ψ_{T^B} of $T^B(h)$ is a nonempty complete lattice.
We can now use the operator $B^S(h)$ to construct an iterative procedure that generates the existence of (i) a limiting subset subintervals of functions of $G^*(k, k)$ defined Proposition 29, and (ii) elements of this subset are not necessarily RE. To do this, first, for $k > 0$, define a lower bound for stationary investment by the continuous function to be simply $h^L(k) = f - x^*(k, k; f; h)$ in the following:

$$u'(x^*) - \beta u'(f(f - x^*))r(x^*)(1 - \tau(f)) = 0$$

Similarly, under the Inada conditions in A1 and A2, \exists a continuous $h^u < f$, such that $T^B(h^u) \leq h^u < f$. Further, both $h^L(0) = h^u(0) = 0$. This is the level of investment in a two-period economy with a tax rate parameterized at $\hat{h}(k) = f$. For such an h^L, we have $h^L < T^B(h^L)$.

Then, define the set of functions (viewing h as investment) as follows:

$$\tilde{B}^f = \{h \in B^f | h^L \leq h \leq h^u\}$$

For all $k > 0$, under Assumptions 1, 2, and 3(ii), have $0 < h^L \leq T^B(h) \leq h^u < f$. Next, for $h \in \tilde{B}^f$, recalling the definition of the the inverse marginal utility m_h level constructed in section 3 in equation (??), define an continuation envelope $g_h(k, k)$ for an investment function $h \in \tilde{B}^f$ as follows:

$$g_h(k) = \frac{r(k)(1 - \tau(h(k)))}{m_h(k)}$$

which is well-defined and increasing in h on \tilde{B}^f. Then, the function space of continuation envelopes in a candidate equilibrium $h \in \tilde{B}^f$ for the individuals capital holdings k is given follows:

$$G^B = \{g_h(k, k)| g_h^u \leq g_h \leq g_h^L, \ h \in \tilde{B}^f\}$$

Let $\mathcal{J}(G^B)$ be the collection of all sub-order intervals in the space G^B, namely,

$$\mathcal{J}(G^B) = \{I^G| I^G = [g_1, g_2], \ g_1 \leq g_2, g_1 \in G^B, g_2 \in G^B\} \cup \emptyset$$

Endow $\mathcal{J}(G^B)$ with the Hausdorff metric, so $\mathcal{J}(G^B)$ is a complete metric space. We refer to $\mathcal{J}(G^B)$ as the interval power domain of G^B. Let $\mathcal{J}(\tilde{B}^f)$ denote a similar interval power domain for the set \tilde{B}^f with typical (nonempty) element $I^B = [h_1, h_2]$, $h_1 \in \tilde{B}^f$, $h_2 \in \tilde{B}^f$. Endow both $\mathcal{J}(G^B)$ and $\mathcal{J}(\tilde{B}^f)$ with the reverse set inclusion order. As we shall argue in the sequel, when endowing an interval power domain with the reverse set inclusion order, the resulting partial order has
a nice interpretation from the perspective of best approximation. Further, both \(\mathcal{J}(G^{B'}) \) and \(\mathcal{J}(\tilde{B}') \) are continuous lattices (hence, necessarily complete lattices).

We can now define a particular iteration of a correspondence-based procedure using the interval operator \(\tilde{T}(I)(x) \) operating in the space of subintervals \(\mathcal{J}(G^{B'}) \).\(^{40}\) Let \(I_u^G \subset [0, g^u] \subset G^B \), and define a new operator \(\tilde{T}(I^G)(x) \) that maps subintervals \(\mathcal{J}(G^{B'}) \) into themselves as follows:

\[
\tilde{T}(I^G) = \{g_h | h \in I^B, I^B \in \mathcal{J}(\tilde{B}')\}
\]

Consider interval iterations on \(\tilde{T}(I^G)(x) \) from the top element of \(\mathcal{J}(G^{B'}) \), namely, \(I_u^G = G^B \). This element be view formally as the "worst" approximation of a recursive equilibrium selection in \(G^B \) in the reverse set inclusion order.\(^{41}\) As \(I_u^G \subset G^u = D \) (as \(I_u^G \) consists of selections with additional properties in \(G^u \)), \(I_u^G \geq G^u \) under reverse set inclusion, and \(I_u^G \) a "better" approximation than the initial guess \(G^u \) relative to any recursive equilibrium in the space of correspondences \(G \) ordered under reverse set inclusion.

Using equation (5.2.2), consider the iterations of these two different operators from their respective top elements. That is, generate the trajectories of the interval operator \(\tilde{T}(I^G)(x) \), namely \(\{\tilde{T}^n(I_u^G)(x)\}_{n=1}^{\infty} \), recursively from initial interval \(I_u^G \) using equation (5.2.2), and the trajectories of the Miao-Santos operator \(\{T^n(G^u)(x)\}_{n=1}^{\infty} \) defined using equation (18). For any orbit \(n \), respective operators are partially ordered under reverse set inclusion as follows

\[
\tilde{T}^n(I_u^G)(x) \geq T^n(G^u)(x)
\]

The iterations \(\tilde{T}^n(I_u^G)(x) \) are just selections in \(T^n(G^u)(x)) \) by construction. Appealing to Lemma 30, and noting the order continuity of \(\tilde{T}(I^G)(x) \), we have

\[
\inf_n \tilde{T}^n(I_u^G)(x) = \lim_n \tilde{T}^n(I_u^G)(x) = \Psi_{\tilde{T}}^{\mathcal{J}(G^{B'})}
\]

It can be shown, in particular, that the interval limit \(\Psi_{\tilde{T}}^{\tilde{B}'} \) induces selection \(g^* \) that can be used to define "generalize Markovian equilibrium" policies for investment, namely \(a^*_g = a^*(k, k, g^*(k, k)) \in \Psi_{\tilde{T}}^{\tilde{B}'} \) defined in Lemma 30. Further,

\(^{40}\)See Moore [38] [39] for a discussion of interval operators.

\(^{41}\)This lower bound is, of course, the upper bound for our procedure under set inclusion. Further, in Proposition 29, we are taking the correspondence \(G^u = I_u^G \).
as both $\mathcal{J}(\mathbf{G}^{B'})$ and \mathbf{G}^B are metric spaces under the Hausdorff metric, relative to any recursive equilibrium selection $a^*_g \in \Psi_{T^B}$, one can show that our interval approximations minorize in uniform distance a RE selection induced by a candidate generalized Markov equilibrium selection constructed from the Miao-Santos limiting correspondence using the topology of uniform convergence on $\mathbf{G}^{B'}$.

Unfortunately, even with all this structure, as our interval operator only constructs selections $a^*_g \in \Psi_{T^B}$, these selections are not necessarily RE. Therefore, this particular interval iteration scheme using $\hat{T}(I^G(x))$ defined in $\mathcal{J}(\mathbf{G}^{B'})$ does not provide a method for verifying even the existence of recursive equilibrium. Of course, what the iterations $\hat{T}^n(I^G(x))$ do allow us to conclude is that without further argument, Proposition 29 also does not verify the existence of recursive equilibrium decision rules a^*_g induced for some selection $g^*(k, k) \in G^*(k, k)$ (as we have $\Psi_{T^B} \supset G^*(k, k)$ under reverse set inclusion, and the set of recursive equilibrium induced by selection $a^*_g \in \Psi_{T^B}$ could be empty).

5.3. A New Correspondence-Based Method in Function Spaces

We can now provide a very simple fix for this situation. To do this, restrict our interval operator $\hat{T}(I^G(x))$ to a smaller domain, say subintervals of the set $\tilde{C} \subset \mathbf{B}'$. Further, define this restriction of $\hat{T}(I^G(x))$ by using the mapping $B^S(\hat{h}) = \vee_{\tilde{h}} \Psi_{A^S}(\tilde{h})(k, k)$ defined Lemma 27. To see the details, let the interval powerdomain of \mathbf{C} be defined by:

$$\mathcal{J}(\mathbf{C}) = \{I^C|I^C = [h_1, h_2], h_1 \in \mathbf{C}, h_2 \in \mathbf{C}\} \cup \emptyset$$

Modifying the definition of g_h, replacing \mathbf{B}' in the definition of \mathbf{G}^B, and restricting the set of continuation envelopes to be those defined using the operator $B^S(h)$ defined in \mathbf{C}, we can define an "APS" method valued in function spaces. That is, using $B^S(0)$, recompute the candidate continuation envelopes \mathbf{G}^C as follows:

$$g^e_h(k, k) = g_h(k, k) \text{ for } h \in \tilde{C}$$

with

$$\tilde{C} = \{h \in \mathbf{C}| B^S(0) \leq 0 \leq h^u < f\}$$

Then, define \mathbf{G}^C to be the collection of continuation envelopes:

$$\mathbf{G}^C = \{g^e_h(k, k)|g^e_h \leq g^e_h \leq g^e_{B^S(0)}, h \in \tilde{C}\}$$
We now study the operator $\hat{T}(I)(x)$ define in equation (5.2.2) in the smaller interval power domain $\mathcal{J}(G^C)$ given by

$$\mathcal{J}(G^C) = \{I^C|I^C = [g_1, g_2], g_1 \leq g_2, g_1 \in G^C, g_2 \in G^C\} \cup \emptyset$$

Letting $I^C_u = \vee G^C$, denoting the restriction $\hat{T}(I^B)(x)$ to $\mathcal{J}(G^C)$ by $\hat{T}_e(I)(x)$, we now prove a stronger version of Proposition 29 relative to interval mapping $\hat{T}_e(I^C)$. Further, we can give a very simple explicit operator on the set of fixed points of $\hat{T}_e(I)(x)$, say $\Psi^C_{\hat{T}_e}$, that computes a jointly continuous selection $g^*(k, k) \in G^*(k, k)$, such that $g^*(k, k)$ induces an recursive equilibrium decision rule $a^*_g(k, k, g^*(k, k))$ that is a generalized Markov equilibrium in the sense of Miao and Santos [34].

Theorem 31. For every n, and all $x \in X$, the orbits for the operators $\hat{T}_e(I)(x)$, $\hat{T}(I)(x)$, and $T(G)(x)$ are ordered, respectively, under reverse set inclusion from top elements I^C_u, I^B_u, and G^u, as follows: $\hat{T}_e(I^C_u)(x) \geq \hat{T}_e(I^B_u)(x) \geq T^u(G^u)(x)$. Further, $\lim_n \hat{T}_e(I^C_u) = \sup_n \hat{T}_e(I^C_u) \rightarrow \wedge \Psi_{\hat{T}_e} = [0, g^*] \geq \Psi_{T^u} \geq G^*(k, k)$, where the sup is taken with respect to the reverse set inclusion order. Finally, $g^*(x)$ corresponds to a recursive equilibrium $h^* = \wedge \Psi_{T^u}$ in Theorem 28.

Proof. Proof: First, for $n = 1$, that we have

$$\hat{T}_e(I^C_u)(x) \geq \hat{T}(I^B_u)(x) \geq T(G^u)(x)$$

follows from $I^C_u \geq I^B_u \geq G^u$, and the fact that $\hat{T}_e(I^C_u)(x)$, by definition, consists of selections in \hat{C} from $\hat{T}_e(I^B_u)(x)$, and $\hat{T}_e(I^B_u)(x)$ consists of selections \hat{B}^I in $T^u(G^u)(x)$. As reverse set inclusion is a closed on the powersets D^I, this comparative dynamics result per iterations is preserved in the limit: i.e,

$$\lim_n \hat{T}_e(I^C_u)(x) \geq \lim_n \hat{T}_e(I^B_u)(x) \geq \lim_n T(G^u)(x)$$

Finally, as by construction, $\hat{T}_e(I^C_u)(x) = [0, \frac{r(f-B^u(0))}{m(f-B^u(0))}]$, we have $g^*(k, k) = \frac{r(\wedge \Psi_{T^u})}{m(\wedge \Psi_{T^u})}$.

6. Appendix: Definitions and Results

To keep the paper self-contained, many definitions needed in the paper are now provided.
6.1. Spaces

An arbitrary set \((P, \geq)\) is partially ordered set (or Poset) if \(P\) is equipped with an order relation \(\geq: P \times P \to P\) that is reflexive, antisymmetric and transitive. If every element of a poset \(P\) is comparable, then \(P\) is chain. If \(P\) is a chain and countable, \(P\) is a countable chain. The space \(P^{op}\) shall denote the poset \(P\) equipped with its dual partial order \(\geq^{op}\). An upper (respectively, lower) bound for a set \(B \subseteq P\) is an element \(x^u\) (respectively, \(x^l\)) such that for any other element \(x \in B\), \(x \leq x^u\) (respectively, \(x^l \leq x\)) for all \(x \in B\). If there is a point \(x^u\) (respectively, \(x^l\)) such that \(x^u\) is the least element in the subset of upper bounds of \(B \subseteq X\) (respectively, the greatest element in the subset of lower bounds of \(B \subseteq P\)), we say \(x^u\) (respectively, \(x^l\)) is the supremum (respectively, infimum) of \(B\). Clearly if the supremum or infimum of a set \(P\) exists, it must be unique.

We say a set \(L\) is a lattice if for any two elements, say \(x\) and \(x'\) in \(L\), \(L\) is closed under the operation of infimum (denoted by \(x \land x'\)), and supremum (denoted \(x \lor x'\)). The former is referred to as “the meet” of the two points, while the latter is “the join”. A subset \(L_1\) of \(L\) is a sublattice of \(L\) if it contains the sup and the inf (with respect to \(L\)) of any pair of points in \(L_1\). A lattice is complete if any \(L_1 \subseteq L\), upper bound (denoted \(\lor L_1\)) and a greatest lower bound (denoted \(\land L_1\)) are both in \(L\). If this completeness property only holds for countable subsets \(L_c\), the lattice is \(\sigma\)-complete. In a poset \(P\), if every subchain \(C \subseteq P\) is complete, then \(P\) is referred to as a chain complete poset (or equivalent, a complete partially ordered set or CPO). A set \(C\) is countable if it is either finite or there is a bijection from the natural numbers onto \(C\). If every chain \(C \subseteq P\) is countable and complete, then \(P\) is referred to as a countably chain complete poset. An order interval is defined to be \([a, b] = [a] \cap [b], a \leq b\).

6.2. Mappings in Posets

Let \((P_1, \geq_{P_1})\) and \((P_2, \geq_{P_2})\) be Posets. A function (or, equivalently, operator) \(f: P_1 \to P_2\) is isotone (or order-preserving) if \(f(x') \geq_{P_2} f(x)\), when \(x' \geq_{P_1} x\), for \(x, x' \in P_1\). A function \(f(x)\) is antitone (or order-reversing) if \(f(x) \geq_{P_1} f(x')\) when \(x' \geq_{P_1} x\), for \(x, x' \in P_1\). A function that is isotone or antitone is monotone. If \(P_1\) and \(P_2\) be Posets, \(X\) a set, \(g: X \to P_2\) a function, we say a function \(g(x)\) admits an isotone decomposition \(f(p_1, p_2)\) if there exists a function \(f: P_1 \times P_1 \to P_2\) such that \(f(p_1, p_2)\) is isotone on \(P_1 \times P_1\). If \(X\) and \(Y\) are three sets, \(f: X \times X \to Y\), the diagonal of a function \(f(x, y)\) is a function \(g = f(x, x)\).

Finally, a sequence \(\{h_n \to h\}\) in \(H\) is order convergent if there exists two
monotonic sequences of elements from \(H \), one decreasing \(\{h_{1n}\} \), and one increasing \(\{h_{1n}\} \), such that \(h = \inf h_{1n} = \sup h_{1n} \) and \(h_{1n} \leq h_n \leq h_{1n} \). A necessary and sufficient condition for an increasing sequence \(h_n \to h \) to be order convergent is \(h = \sup h_n \). An operator \(Ah \) is order continuous on \(H \) if for all countable chains \(C' = \{h_n\}, \forall A(C') = A(\bigvee C') \).

For a set \(X \), define by \(2^X \) the powersets of \(X \), and \(L(X) \) the nonempty sublattices of \(L \), and \(L_1 \) and \(L_2 \) be two arbitrary sublattices. Let \(R_{X_2} \) be an order relation on \(2^X \). We say a correspondence \(F : P \to 2^{X_2} \) is ascending in the relation \(R_{X_2} \) from a poset \((P, \geq) \) to \(2^{X_2} \) if \(F(x')R_{X_2}F(x) \), when \(x' \geq x \). If this set relation \(R_{X_2} \) induces a partial order on the a subclass of the powersets \(2^{P_2} \), say \(P(X_2) \), and if \(F(x) : P \to P(X_2) \), we refer to \(F(x) \) is a isotone correspondence. Dually, we can define a descending and antitone correspondence.

In this paper, we shall focus primarily on a few order relations on the powersets \(2^X \) of a set \(X \). For an arbitrary set \(X \), the Set inclusion Partial order \(\geq_{SI} \) is the following: \(A \geq_{SI} B \) if \(B \subset A \). Set inclusion induces a continuous lattice structure on \(2^X \) with \(\land = \cap \), \(\lor = \cup \). If \(X = L \) is additionally a lattice, define \(L(X) = \{L_1 \subset X | L_1 \text{a nonempty sublattice}\} \), and let \(L_1, L_2 \in L(X) \). Then, define Veinott’s Strong Set Order \(\geq_s \) on \(L(X) : L_1 \geq_s L_2 \), if for any \(a \in L_1, b \in L_2 \), \(a \land b \in L_2 \) and \(a \lor b \in L_1 \), Veinott’s strong set order will be used extensively in this paper.

Finally, let \(F : X \to 2^X \setminus \emptyset \) be a non-empty valued correspondence for each \(x \in X \). The correspondence \(F \) is said to have a fixed point if there exists an \(x^* \) such that \(x^* \in F(x^*) \). If this correspondence is actually a function, say \(f(x) \), then a fixed point \(x^* \) has \(x^* = f(x^*) \). A correspondence \(F : X \times T \to 2^X \setminus \emptyset \) is referred to as parameterized correspondence. For \(F(x, t) \), denote the fixed point set at \(t \in T \) by \(\Psi^X_F(t) : T \to 2^X \). A fixed point \(x^* \in \Psi^X_F(t) \) is minimal (resp, maximal) in \(X \) if there does not exist another fixed point, say \(y^* \in \Psi^X_F(t) \), such that \(y^* \preceq x^* \) (resp, \(x^* \preceq y^* \)). If a fixed point is either minimal or maximal, we say it is extremal. If \(x^*_L(t) = \land \Psi^X_F(t) \) exists relative to the order structure in \(X \) (resp, \(x^*_R(t) = \lor \Psi^X_F(t) \) relative to \(X \)), then \(x^* \) is the least fixed point (resp, greatest fixed point) of \(F \) relative to \(X \).

6.3. Some Useful Fixed Point Theorems

In our constructions, we shall apply various versions of Tarski’s fixed point theorem. We begin with an interesting version of Tarski’s fixed point theorem due to Veinott. Let \(X \) be a complete lattice, \(2^X \) the powersets of \(X \), \(T \) a partially ordered set, and \(F : X \times T \to L(X) \) be a parameterized correspondence, where
$\mathbf{L}(X) \subset 2^X$ is the collection of nonempty sublattices of X endowed with Veinott’s strong set order. The set $(\mathbf{L}(X), \geq)$ is the largest partially ordered set in 2^X.\footnote{\emph{L}_c(X) is not generally a lattice (e.g., for X not distributive). If X is completely distributive complete (i.e., $X \subset \mathbf{R}^I$, where I is any arbitrary set, \mathbf{R}^I given the product order, and $X=[0,1]^I$ with its relative partial order), then $L(X)$ is a complete lattice (actually, completely distributive complete lattice, hence, a continuous lattice).}

Fixing $t \in T$, let $\Psi^X_F(t)$ be the set of fixed points of $F(x,t)$ in X. We have the following version of Tarski’s theorem.\footnote{See Topkis ([56], Theorem 2.5.2) for proof.}

Proposition 32. Veinott [58]. Let X be a complete lattice, $F(x,t) \in \mathbf{L}(X)$ is nonempty, subcomplete-valued correspondence that is jointly strong set order ascending. Then (i) $\Psi^X_F(t)$ is a nonempty complete lattice, (ii) $\Psi^X_F(t)$ is strong set order ascending, and (iii) $\vee \Psi^X_F(t)$ and $\wedge \Psi^X_F(t)$ are isotone selections.

Tarski’s original theorem (Tarski [55], Theorem 1) occurs as a special case of Proposition 32 where $F(x,t) = f(x)$, and $f : X \to X$ is a operator (i.e., a function).

There are many useful constructive versions of Proposition 32 in the literature for the special case that the parameterized correspondence $F(x,t)$ is a parameterized operator $f : X \times T \to X$. In the first case, we assume for each $t \in T$, the partial map $f_t(x) : X \to X$ is order continuous. For this case, we have the following version of Tarski-Kantorvich-Markowsky theorem (e.g., Dugundji and Granas [19], Theorem 4.2, and Markowsky [30], Theorem 9).

Proposition 33. Let (X, \geq) be a CPO, $f : X \times T \to X$ isotone, $\exists a x_L \in X$ such that $x_L \leq f(x_L,t)$, and $\Psi^X_f(t) : T \to 2^X$ a fixed point correspondence for f, and for all $t \in T$, Then, (i) $\Psi^X_f(t) \subset \{ x \in X | x_L \leq x \}$ is nonempty CPO. Further, if (X, \geq) is countably chain complete, and $f(x,t)$ is order continuous on X, each $t \in T$, the iterations $\sup_n f^n(x_L) = \mu(t) \in \Psi^X_f(t)$, where $\mu(t) = \inf_{x \in \{ x \in X | x \geq x_L \}} \Psi^X_f(t)$. An important special case of the above corollary occurs when was add additional structure to both (X, \geq) and $f(x,t)$. We state the theorem in the context we shall apply it in the paper, namely when (X, \geq) is a compact order interval in
the space of bounded real-valued continuous functions $C(Y)$ defined on compact $Y \subset \mathbb{R}^n$ endowed with (i) the topology of uniform convergence, and (ii) pointwise partial order. This version of the theorem is proven in Amann ([3], Theorem 6.1). The existence result holds in more general topological spaces, while the continuous fixed point comparative statics result holds in more general ordered metric spaces.

Proposition 34. In Corollary 33, if additional, (a) (X, \succeq) is a compact order interval in $C(Y)$, (b) $f(x; t)$ continuous in x, each $t \in T$, then, (i) the iterations

$$\sup_n f^n(x_L; t) = \lim_n f(x_L; t) = \mu(t) \in \Psi_X^X(t),$$

and

$$\inf_{x \in \{x \in X | x \geq x_L\}} f^X_f(t),$$

Further, if, additionally, (c) $T \subset C(Y)$, (d) $f(x, t)$ is jointly continuous, (e) and relative to the set $X_1 = \{x \in X | x \geq x_L\} \subset X$, for all $x_0 \in X_1$, $\lim_n f^n(x_0; t) \rightarrow \mu(t) \in \Psi^X_f(t)$, then (ii) $\mu(t)$ is continuous on T.

Proposition 34 is a particularly useful result for many of our arguments. The Tarski-Kantorvich theorem tells us that the upper envelope (resp, dually, lower envelope) from some least point in X (resp, any greatest point in X), order converges to least (resp, greatest) fixed points in X. We can make this convergence in topology by introducing the Scott topology (an order topology where the bases of the order topology is form from directed sets in X). This topology is not always easily related to approximate solution methods. On the other hand, in Proposition 34, the topology is standard in the numerical approximation literature (i.e., uniform approximation). So the constructive result is particularly appealing in this context.

References

