1) Let \(\{x_n\} \) be a sequence of real numbers and let \(\{x_{n_k}\} \) be a subsequence converging to a real number \(x \). Show that
\[
\lim_{n \to \infty} \inf n \leq x \leq \lim_{n \to \infty} \sup x.
\]

2) Let \(f : [0, +\infty) \to \mathbb{R} \) be a continuous function such that \(\lim_{t \to +\infty} f(t) = 0 \). Prove that
\[
\lim_{t \to +\infty} e^{-t} \int_0^t e^{s} f(s) ds = 0.
\]

3) (Intermediate Value Theorem for Derivatives.) Suppose that \(f \) is differentiable on \([a, b] \) with \(f'(a) \neq f'(b) \). Prove that if \(y_0 \) is a real number that lies between \(f'(a) \) and \(f'(b) \), then there is an \(x_0 \) in \((a, b) \) such that \(f'(x_0) = y_0 \). (Note that \(f' \) is not assumed to be continuous.)

4) Let \(f : [a, b] \to \mathbb{R} \) be a Riemann integrable function on \([a, b] \) and let \(a < c < b \). Show that \(f \) is Riemann integrable on \([a, c] \) and \([c, b] \) and that
\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.
\]
(Hint: Recall that if \(P \) and \(Q \) are partitions of an interval and \(Q \) is a refinement of \(P \) then \(U(f, Q) - L(f, Q) \leq U(f, P) - L(f, P) \), where \(U \) and \(L \) are the usual upper and lower Riemann sums associated to the partitions.)

5) Let \((X, d) \) be a metric space. Show that every compact set in \(X \) is closed. (Note: You cannot solve this problem by quoting a theorem that has the given statement of the problem as a special case.)

6) Prove that there exist functions \(u, v : \mathbb{R}^4 \to \mathbb{R} \), continuously differentiable on some ball \(B \) in \(\mathbb{R}^4 \) centered at the point \((x, y, z, w) = (2, 1, -1, -2) \), such that \(u(2, 1, -1, -2) = 4 \), \(v(2, 1, -1, -2) = 3 \), and the equations
\[
u^2 + v^2 + w^2 = 29
\]
and
\[
\frac{u^2}{x^2} + \frac{v^2}{y^2} + \frac{w^2}{z^2} = 17
\]
both hold for all \((x, y, z, w) \) in \(B \).