ALGEBRA QUALIFYING EXAM: AUGUST 19, 2014

Show all work to receive full credit. When in doubt, it is better to show more work than less.

1. Let $W_1 \subseteq V_1$ and $W_2 \subseteq V_2$ be vector spaces over the field F. Set $U := \{ T \in \mathcal{L}(V_1, V_2) \mid T(W_1) \subseteq W_2 \}$, where $\mathcal{L}(V_1, V_2)$ denotes the space of linear transformations from V_1 to V_2. Note that U is a subspace of $\mathcal{L}(V_1, V_2)$.

(i) Show that there exists a surjective linear transformation $\phi : U \to \mathcal{L}(V_1/W_1, V_2/W_2)$. (8 points)

(ii) Identify (with proof) the kernel of ϕ. (4 points)

(iii) Assume that V_1 and V_2 are finite dimensional over F. Find a formula for the dimension of U. (4 points)

2. Let V denote the vector space of 2×2 matrices over the field of complex numbers and set $A := \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$.

Let $T_A : V \to V$ be the linear transformation given by $T_A(B) = A \cdot B$, for all $B \in V$. Find the Jordan canonical form for T_A and find a basis B for V such that the matrix of T_A with respect to B is in Jordan canonical form. (18 points)

3. Let V be a finite dimensional vector space over the field F and $T : V \to V$ a linear transformation.

(i) For $v \in V$, let $\mu_{T,v}(X)$ denote the monic polynomial of least degree such that $\mu_{T,v}(T)(v) = 0$. Prove that v is a cyclic vector for V with respect to T if and only if the degree of $\mu_{T,v}(X)$ equals the dimension of V. (5 points)

(ii) Suppose $V = W_1 \oplus W_2$, for T-invariant subspaces $W_1, W_2 \subseteq V$. Write $\mu_1(X)$ for the minimal polynomial of $T|_{W_1}$ and $\mu_2(X)$ for the minimal polynomial of $T|_{W_2}$ and suppose that $\mu_1(X)$ and $\mu_2(X)$ are relatively prime. For $w_i \in W_i$, prove that $v := w_1 + w_2$ is a cyclic vector for V with respect to T if and only if w_i is a cyclic vector for W_i with respect to $T|_{W_i}$, for $i = 1, 2$. (8 points)

(iii) Give a specific example where the conclusion of (i) fails in case $\mu_1(X)$ and $\mu_2(X)$ are not relatively prime. (5 points)

4. Let $p > 5$ be a prime that is not congruent to 1 modulo 5. Prove that any group of order $15p$ contains a subgroup of order $5p$. State carefully any theorem you use to prove this result. (16 points)

5. Let R be a principal ideal domain. For $f, g \in R$, show that $f^{1000}g^{1014}$ belongs to the ideal generated by f^{2014} and g^{2014}. (16 points)

6. Show that $X^5 - 2$ is irreducible over the field \mathbb{Z}_{31}. (16 points)