1. Let G be a finite group with $|G| = p^n$, p prime.
 (i) Prove that $Z(G)$, the center of G, is non-trivial.
 (ii) Prove that if $N \subseteq G$ is a normal subgroup of order p, then $N \subseteq Z(G)$. Hint: Let G act on N.
 (iii) Give an example of a non-abelian group group of order p^n whose center contains more than one normal subgroup of order p.

2. Let R be an integral domain. Suppose there exists a nonzero, non-unit $a \in R$ such that for every $r \in R$, there exists a unit u and $n \geq 0$ such that $r = ua^n$. Such a ring is called a discrete valuation ring. Set $P := aR$. Let $R[\frac{1}{a}]$ denote the ring of polynomial expressions in $\frac{1}{a}$ with coefficients in R. Note, $\frac{1}{a} \notin R$.
 (i) Prove that P is a maximal ideal, and in fact, the only maximal ideal.
 (ii) Prove that $\bigcap_{n=1}^{\infty} P^n = (0)$.
 (iii) Prove that $R[\frac{1}{a}]$ is a field.
 (iv) Let R be the ring of formal power series over \mathbb{Q}. Thus, a typical element in R is of the form $\sum_{i=0}^{\infty} \alpha_i x^i$, with $\alpha_i \in \mathbb{Q}$ and with addition and multiplication given just like for polynomials. Prove that R is a discrete valuation ring.

3. Let \mathbb{Z}^n denote the free abelian group of rank n, its elements being row vectors of length n. Let A be an $r \times n$ matrix over \mathbb{Z} and write K_A for the subgroup of \mathbb{Z}^n generated by the rows of A.
 (i) Suppose $B := PAQ$, where P is an $r \times r$ invertible matrix over \mathbb{Z} and Q is an invertible $n \times n$ matrix over \mathbb{Z}. Prove that \mathbb{Z}^n/K_A and \mathbb{Z}^n/K_B are isomorphic as abelian groups.
 (ii) Suppose $A = \begin{pmatrix} 4 & -2 & 4 \\ 2 & 4 & 4 \end{pmatrix}$. Write \mathbb{Z}^3/K_A as a direct sum of cyclic groups.

4. Let $f(x) := x^3 - 9x + 3 \in \mathbb{Q}[x]$ and α a root of $f(x)$.
 (i) Prove that $f(x)$ is irreducible over \mathbb{Q}.
 (ii) In the field $\mathbb{Q}(\alpha)$, write $(3\alpha^2 + 2\alpha + 1)^{-1}$ in terms of the basis $1, \alpha, \alpha^2$.

5. Let A be an $n \times n$ matrix over the field F and F^n denote the vector space of column vectors of length n. Suppose A is idempotent, i.e., $A^2 = A$.
 (i) Prove that $F^n = U \oplus W$, where $A \cdot u = 0$, for all $u \in U$ and $A \cdot w = w$, for all $w \in W$.
 (ii) If $F = \mathbb{Z}_p$, how many idempotent 3×3 matrices are there?

6. Find the characteristic polynomial, the minimal polynomial, the rational canonical form and the Jordan canonical form for the matrix $A = \begin{pmatrix} 2 & 0 & 0 \\ 9 & 7 & 5 \\ -9 & -5 & -3 \end{pmatrix}$. Here we assume A has coefficients in a field of characteristic zero. How does your answer change if the entries of A belong to a field of positive characteristic?