Combinatorics and Graph Theory Prelim, August 19, 1994

PART I. Do Problem #1 and TWO out of the THREE Problems, #2, #3, #4.

1. (a) Give a combinatorial proof of \(\binom{n}{k} \binom{k}{m} \) \(\binom{n}{m} \binom{n-m}{k-m} \).

(b) Show that the number of partitions of \(n \) into distinct parts equals the number of partitions of \(n \) into odd parts.

(c) Let \(p_1, p_2, \ldots, p_k \) be positive integers, and let \(n = (\sum_{i=1}^{k} p_i) - k + 1 \). Prove: If \(f : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, k\} \), then for some \(i, 1 \leq i \leq k \), \(|f^{-1}(i)| \geq p_i \). (\(|f^{-1}(i)| \) is the cardinality of the inverse image of \(i \) under \(f \).)

(d) The lattice of partitions of \(\{1, 2, \ldots, n\} \) contains how many maximal chains from \(12 \cdots n \) to \(1-2-\cdots-n \)? (\(12 \cdots n \) is the partition having all elements in one subset; \(1-2-\cdots-n \) is the partition consisting of \(n \) singleton subsets.)

2. Let \(a_n \) be the number of sequences of length \(n \) of letters of the English alphabet (which contains 26 different letters) in which between them the five vowels A, E, I, O, U occur an even number of times.

(a) Show that the sequence \(\{a_n\} \) satisfies the recurrence relation \(a_{n+1} = 16a_n + 5(26^n) \) for \(n \geq 1 \) with \(a_1 = 21 \).

(b) Find the generating function for the sequence \(\{a_n\} \).

(c) Find a formula for \(a_n \).

3. (a) State Polya's Theorem.

(b) Describe all symmetries of a regular hexagon.

(c) How many essentially different colorings of a regular hexagon are there, where the vertices are colored from a fixed set of \(c \) colors?

4. Assuming only the definition of a projective plane, prove the following:
 If \((P, L) \) is a projective plane \((P = \text{ set of points}, \ L = \text{ set of lines}) \), then there exists an integer \(n \geq 2 \) such that each line contains exactly \(n + 1 \) points, each point is on exactly \(n + 1 \) lines, and \(|P| = |L| = n^2 + n + 1 \).
PART II. Do THREE of the following FOUR problems.

1. Prove: If G is a graph with all vertices of even degree, then the edges of G can be partitioned into the edge sets of cycles of G.

2. Prove: For any graph G,

$$
\kappa(G) \leq \kappa_1(G) \leq \delta(G).
$$

($\kappa(G)$ is the (vertex-)connectivity; $\kappa_1(G)$ is the edge-connectivity; and $\delta(G)$ is the minimum degree of G.)

3. Let Q_n be the graph of the n-cube. ($Q_1 = K_2, Q_n = Q_{n-1} \times K_2$.)

Answer each of the following questions, and prove your answers are correct.

(a) For which n is Q_n Eulerian?

(b) For which n is Q_n Hamiltonian?

(c) For which n is Q_n planar?

(d) For which n is Q_n 1-factorable? (1-factorable means its edges can be partitioned into perfect matchings.)

4. An edge-dominating set for a graph G is a set F of edges such that every edge of G belongs to F or is adjacent to (shares a vertex with) some edge of F. The edge-dominating number $\sigma_1(G)$ is the minimum cardinality of an edge-dominating set in the graph G. The edge independence number $\beta_1(G)$ is the maximum cardinality among matchings of G. A matching in a graph G is a maximal matching if it is not properly contained in any other matching. Let $\beta_1^*(G)$ denote the minimum cardinality among maximal matchings.

Prove: For all graphs G, $\sigma_1(G) \leq \beta_1^*(G) \leq \beta_1(G)$.